
UCRL-ID-139186

Damage Detection and Identification of Finite Element

Models Using State-Space Based Signal Processing

A Summation of work completed at the

Lawrence Livermore National Laboratory

February 1999 to April 2000

G.C. Bumett

April 28, 2000

U.S. De ~artment of Energy

~~
"~ Lawrence
[Livermore
] National

Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the Urriversity of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.goy/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http:/ /www.llrtl.gov/tid/Library.htrnl

Damage detection and identification of Finite Element

Models using state-space based signal pr~ocessing

A summation of work completed at the

Lawrence Livermore National Laboratory

February 1999 to April 2000

by

Gregory C. Burnett, PhD

EE-DSED

April 28th, 2000

Damage detection and identification of Finite Element Models using

state-space based signal processing

Abstract

Until recently, attempts to update Finite Element Models (FEM) of’larg,e structures based

upon recording structural motions were mostly ad hoc, requiring a large amount of engineering

experience and skill. Studies have been undertaken at LLNL to use state-space based signal

processing techniques to locate the existence and type of model mismatches common in FEM.

Two different methods (Gauss-Newton gradient search and extended Kalman filter) have been

explored, and the progress made in each type of algorithm as well as the results from several

simulated and one actual building model will be discussed. The algorithms will be examined in

detail, and the computer programs written to implement the algorithms will be documented.

Title page

Abstract

Table of Contents

List of Tables

List of Figures

Table of Contents

1. Introduction to the problem and the algorithms

1.1. The Gauss-Newton gradient search

1.2. The Extended Kalman Filter

2. The models

2.1. Building K given the identification parameters

2.2. Simulated 5 story structure (5, 10, 50, 400 DOF)

2.3. Nevada Test Structure (5 DOE~

2.3. I. Description of the NTS experiment and files

3. GN results

3.1. Simulated models

3.2 NTS 5 DOF model

4. EKF results

4.1. Simulated models

4.2 NTS 5 DOF model

4.3 Speeding it up

5. Conclusions

5.1. Why the 50 DOF model doesn’t work

5.2. Why the NTS 5 DOF model doesn’t work

6. Recommendations for future work

6. I. How to get started with the EKF algorithms

7. Appendices

7.1. Timeline

7.2. File locations

Pages

1-9

10-23

24-37

38-55

56-57

58-59

60-66

67

7.3. References

7.4. Alphabetical listing of filenames and descriptions

7.5. Memo "System ID algorithm" of 3/9/99

7.6. Memo "Flaw detection and identification algorithm (5 DOF) of 3/15/99

7.7. Memo "Integration Filter and Results" of 3/29/99

7.8.

7.9,

7.10.

7.11.

7.12.

7.13.

7.14.

7.15.

7.16.

7.17.

7.18.

7.19.

7.20.

68

69-74

75-81

82-94

95-I03

Draft of paper on the Gauss-Newton algorithm and its strengths and weaknesses

for G. Clark. March-April 1999. ~ 104-111

Memo "Continuous to discrete transformations" of 6/2/99 112-117

Memo "400 DOF progress" of 7/7/99 1185121

Memo on "The State of the Art in Vibration-based Structural Damage

Identification" tutorial of 9/17/99 122-123

Memo "The 5 DOF NTS model using the damped Gauss-Newton algorithm" of

10/18/99 124-132

Memo "10 and 50 DOF results with reduced measurements" using the GN

algorithm, 10/18/99 133-144

Memo "Augmented state vector continuous discrete extended Kalman filter

system identification approach", first look at EKF, 12/22/99 145-152

Memo "The dependence of convergence time for the EKF on the various noise

parameters", 1-D study, I/4/00 153-161

Memo "The performance of the EKF algorithm compared to the Gauss-Newton

for the 10 DOF system", 1/25/00 162-165

Memo "Estimating model order using the SVD of the generalized Hankel matrix",

2/29/00 166-170

Memo "Extended Kalman filter results for 10 DOF, 50 DOF, and NTS 5 DOF",

3/1/00 171-179

Memo "Suggestions and comments from advisory meeting", 3/1/00 180-181

Memo "Action on suggestions and comments from advisory meeting of 3/1/00",

4/19/00 182-206

List of Tables

Table 1.1.

Table 2.1.

Table 2.2.

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Relative qualities of the Gauss-Newton and the Extended Kalman Filter algorithms

Page 8.

Data for the accelerometers from the NTS experiments. Page 19.

Filenames and maximum voltage limits for the NTS experiments. Page 20.

The estimation errors of the original estimate and the EKF algorithm results for a

single measurement and 500 samples. The errors in bold are the errors for the

elements next to the node being observed, the ones in blue are the lowest errors for

that particular case and the errors in red are the largest. Note that there is no

observed correlation between an observation and the lowest error. Page 39.

The results from the 10 DOF experiment where all possible Kij values are used as

the parameters. Only the highlighted parameters converged. Page 49.

Data concerning the use of an adaptive (2-5) and constant (6) method to restrict

number of times P is calculated. Page 46.

Convergence times and identification errors for the same input/output sequences

and different DP thresholds and conditions. Every nth with stiffness means that the

Pdot values associated with the stiffness states were calculated at each time sample

and the entire Pdot calculation was done every n samples. Every nth without

stiffness means that only the entire P calculation was done every n samples. Page

50.

List of Figures

Figure 1.1.

Figure 1.2.

Figure 1.3.

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

Figure 3.6.

Figure 4.1.

Figure 4.2.

A 10 DOF FEM of a five-story building. Page 1.

Algorithmic flow for system identification. Page 2.

Flow of the flaw detection and identification algorithm using the GN search

9.

Page

FEM lattice for the 10 DOF model.

NTS structure. Page 18.

Page 13.

Floor plan of the NTS structure. Page 20.

Mean error for various states of measurement. Measured nodes are denoted by

cross-hatching. The mean identification error is represented by the Size of the red

bar. Page 33.

Simplified 10 DOF stick model. Page 27.

Calculation errors for the 50 DOF problem with 5 observations. The errors are

shown in the bar graph with the yellow bars denoting elements that were perturbed

to 90% of their nominal value and blue bars den.oting unperturbed elements. The

green lines indicate where the measurements took place. Page 34.

Calculation errors for the 50 DOF problem with 5 observations. The errors are

shown in the bar graph with the .yellow bars denoting elements that were perturbed

to 90% of their nominal value and blue bars denoting unperturbed elements. The

green lines indicate where the measurements took place. Page 35.

Calculation errors for the 50 DOF problem with 5 observations. The errors are

shown in the bar graph with the yellow bars denoting elements that were perturbed

to 90% of their nominal value and blue bars denoting unperturbed elements. The

green lines indicate where the measurements took place. Page 36.

Power spectral densities of sensors 3, 6, 9, 12, and 15. Note the lack of power

above 35 Hz for sensor 12. Page 37.

Mean identification error for 10 DOF using Gauss-Newton method (red bars on

left) and the EKF with sine input, R = 0.1, no added noise (blue bars). Page

Average identification error for the EKF with a -20 dB noise level. This is the first

repetition of the 10 experiments above. The left (red) bar represents the mean

Figure 4.3.

Figure 4.4.

Figure 4.5.

identification error with no averaging, while the right (blue) bar is the error with the

last 100 samples averaged. It is clear that the sine wave input results in a more

accurate identification. Page 52.

Average identification error for the EKF with a -20 dB noise level. This is the

second repetition of the 10 experiments above. The left (red) bar represents the

mean identification error with no averaging, while the right (blue) bar is the error

with the last 100 samples averaged. It is clear that the sine wave ir~put results fn a

more consistent performance. Page 53.

The actual values for five of the 25 stiffness value to be identified (blue), and the

estimated values (red). These five values are next to observed nodes and should

easiiy identified. There were 100 samples analyzed. Note that the y axis is not the

same scale for every plot. Page 54.

The change in error covariance P in percent for 1000 samples at 100

samples/second. Note the scale here is multiplied by 106, the maximum value

being 3.5 x 106%. Page 55.

Chapter 1. Introduction to the problem

The design of engineering systems has traditionally resulted from a mix of theory,

empiricism, and experience based on historical performance. With the advent of high-

performance computers and massively parallel computations, it is hoped that simulations based

on first principles will play an even more commanding role in the engineering process..

However, for this to come about, it is essential that large-scale simulation mo~els yield

demonstrably accurate results for the particular problem type under study. The ability to validate

computational models, based on a rigorous comparison between the actual measured system

response and the simulated response, is a requisite to building confidence toward a simulation-

dominated engineering process.

This project is concerned with the evaluation and validation of computational structural

models known as finite element models (FEM). Finite element models represent a continuous

structure with one that is comprised of a finite number of discrete elements. Mechanical

engineers have become quite skilled in the derivation of relationships between these finite

element.s so that the finite model can be an effective approximation of the continuous structure.

The improvement of the model, however, depends on the individual

engineer and his or her experience and talent.

The methodology under development provides a more

systematic method of model improvement and relies on state-space
K5

model-based signal processing to compare simulations with

measured structural response. The signal processing algorithms are K4

intended to determine the degree to which the simulation model

represents the actual behavior of the structure, and to provide
K3

guidance on how the simulation model could be improved. In

addition, the signal processing can sense changes in the structural

system, which offers the potential for establishing an approach for K2 C2

damage detection in large structural systems.

A simple, 10 degree of freedom (DOF) FEM of a five-story
Kt C~

building is shown in Figure 1.1. Each floor is represented as a node
Figure 1.1. A 10 DOF FEM

with mass M, and the nodes are connected by single column of a five-story building.

C5

~ Node

C4 .~--Eiement

~ Node

C3

2

FEM

Actual structure

Repeat as necessary

Simulate
reaction
to shaker

Done

Measure

reaction
to shaker

Do simulated
and measured

motions match?

Figure 1.2. Algorithmic flow for system identification

~ Improve
model

elements of stiffness K and damping C. The stiffness elements K are the ones to be identified,

the mass and the damping values are considered constant. It is important to note that the nodes

are where the measurements occur but the stiffness of the colunms are the quantities to be

identified.

The signal processing algorithm under development follows the procedure outlined in

Figure 1.2. The essential inputs include the mass, damping, and stiffness matrices which are

generated by the finite-element structural simulation model, and the measured response of the

structure for a given loading.. Ideally, the structure should be subjected to carefully controlled

white noise excitations for the model identification process so that the input forcing function is

precisely known and a wide range of vibrational modes are excited. In reality, most real

structures will be too large to excite manually and we will have to rely on ambient vibrations as

the excitation source. This situation will require a model of the ambient excitation source.

This model-based algorithm uses the finite-element-generated system matrices as a

starting point, and constructs a linear state-space model of the system based on the second-order

finite-element equations of motion. A Kalman filter-based residual whiteness test

(Whiteness_Test.m) is used to detect any difference between the simulation model and the actual

structure response..The whiteness test determines if the residuals (difference between the actual

output and modeled output) contain any correlated information. If correlated information is

present and all noise sources are assumed white, the model is not an adequate ~description of the

system. This can be due either to model inadequacies or damage to an otherwise well-modeled

structure. Another way to identify model mismatch is by comparing the recorded and simulated

resonance locations, determined by calculating the eigenvalues of (MIK).

1.1 Gauss-Newton gradient search

If a model mismatch is detected through the whiteness test, several algorithms may be

employed in an attempt to identify the discrepancies. We chose to focus on two that take quite

different approaches to the problem. In the first, an iterative Gauss-Newton gradient search

routine is used to minimize the residuals in the least squares sense. In one dimension, Newton’s

method can be visualized .by plotting the function to be solved and then guessing one of the zero

points. A more refined estimate is compu.ted by drawing a line tangent to the function at our

estimate x¢ (c for c~rrent estimate) and determining where this line crosses the x axis. This

distance is termed Ax, and the residual is Ay = y¢ = f(x¢). Thus

where ~, is the new estimate and

so that

~=xc

f’(x¢) Ay-- f(x¢)
Ax Ax

f(x¢)
~.=xc f’(xc)"

For a minimization problem, the function we want to solve is f’(x), so the equation above

becomes

f’(x¢)
~=x~ f"(x¢)

and for matrices this step becomes

J(xc)

H(Xc)

where J is the Jacobian and H is the Hessian of the matrix F(xc) which we arc trying

minimize.

In the present case, we use Newton’s method to minimize a least-squares cost function that

depends on 0, the vector of k values we are attempting to identify:

l I mf (0) = ~ E(0)’r E(0) = ~ I~i (0) 2

where E is a function of the estimation error (residuals) and ei(O) is i th residual out of m

outputs. The first derivative of frO) is defined by

d E(0)2
Vf(0)

dO 2

Similarly, the second derivative of f(0)

Vf(0) = ~0 J(O)TE(0)

so that Newton’s method appears as

-- = J(0) "r E(0)

= J(o)T J(O) + H(O)TE(O)

J(0)tE(0)

J(O)wJ(O) + wE(O)"

This method converges quite quickly if the initial guess is not too far off and there are no

local minima nearby. Its drawback is that the Hessian H(0) is quite expensive to obtain, and

the analytical form of E(0) is not available (as in this case) both J and It will have to

approximated using finite difference models or secant methods. This means on the order of n

(where n is the model order) calculations for J and (3n2 + n)/2 calculations for It.

In the Gaussian approximation to Newton’s method, the Hessian is discarded and the

iteration proceeds as

E(O)
~=X c -~

J(0)

The expense of the iteration is considerably reduced, but the performance of this method depends

on the magnitude of HE compared to JJ. If HE is much less than J J, this form closely

approximates the pure Newton algorithm. This occurs whenE(0) is linear in 0, or when the

innovation E is small. If these conditions are not met, the Gauss-Newton method may converge

slowly or not at all. More information about this algorithm may be found in Appendix 7.8, [1],

and [2]. A flowchart of the damage detection and identification algorithm can be found in Figure

1.3 at the end of this chapter. For more on the damage detection algorithm, see Appendix 7.6,

"Flaw detection and identification algorithm (5 DOF)".

In summary, the Gauss-Newton method works well for systems that are reasonably well-

modeled, with small ~esiduals, that are not too large. For these systems it can~converge quickly.

However, for high DOF systems, there may be many local minima that the algorithm can get

"stuck" in and the global minima may not be detected. Also, models with significant

nonlinearities or models that are poor may result in non-convergence. Finally, the GN method is

an offline or "batch" algorithm; it operates on all the recorded data at once. Thus the matrices

involved in its calculations can get large very quickly, resulting in a high computational expense.

1.2 The augmented state vector continuous-discrete extended Kalman filter (EKF) system

identification algorithm (whew !)

The second algorithm considered was .the continuous-discrete Extended Kalman Filter,

further details of which may be found in [3]. In this algorithm the underlying process is modeled

as a continuous system, while the measurements are considered to occur at discrete times. The

normal state vector of displacements and velocities is .augmented (or extended) by the parameters

to be identified. The results in a continuous state representation of the problem as

~(t)= f(x(t),t)

y[k] = h[x(k), k] + v[k]
k = 0,1,2...

(1)
(2)

where x(t) is the extended state vector, f is the function describing the evolution of the state

vector, h is a matrix function describing the relation between the states and the measured output,

and w(t) and v[k] are the state and measurement noise vectors with Q(t) and R[k] as

respective covariance matrices. P(t) is defined as the error covariance matrix, which we are

attempting to minimize. In this sense the two algorithms are trying to minimize the same

quantity, namely the covariance of the residuals. If this quantity can be minimized sufficiently,

the model may be assumed to be a good one. It is only the method of minimization that differs

between the two.

For the continuous-discrete EKF, we use the following nomenclature:

i = measurement vector

x[k÷] = state just after measurement

x[k_] = state just before measurement

After each measurement, Equations 1 and 2 are linearized about the measurement and the states

propagated to the next measurement time. A first order approximation is made for (1), and

second order approximation is made for the state covariance matrix P(t). This leads

i(t) -- f(i,

where

P(t) --- F(i, t)P(t) + T (i, t) + Q(t

!
0fi (x, t)]

~-~j x(t) = i(t)I

tk_~ --< t < tk

So before each measurement poinL P[k_] and P[k_] are calculated according to 3 and 4 above.

To update the system following a measurement at time k, the following steps are taken:

(3)
(4)

1) Calculate the Kalman gain: K[k]= P[k_]Hkr (ilk_]) ¯ k (i [k_])P[k_]H~ (~[k_]) +. R[k

2) Update the state equation: ilk+] = ilk_] + K[k]. [y[k] - h(i[k_], k)]

3) Update the state covariance: P[k+] = [I - K[k]Hk (i[k_])].P[k_]

where

0hi(x,t) I ’
HiJ - -~ x(t) = ~(t)

The states are now propagated according to Equations 3 and 4 to the next measurement point. It

is clear that the measurement points are not required to be regular nor even to occur at all, but

given relatively noise-free measurements, the more that can be taken, the better the state

estimation.

For a I-D problem the states are defined as

x=[x ,

with x representing the displacement of the SHO and k the stiffness. The equations describing

their evolution are

so that

and

hi "- X2

--’~2 x~x3
b u

= x2 +-- (5)
m m m

~3=0

F=-x -b/m -x m

0

H=[-x3/m -b/m -xl/m]

The only assumptions made in this algorithm are that the system and measurement noises are

uncorrelated, the initial state is a Gaussian with the given initial state as the mean and P0 as the

variance. No assumption is made about the input u, although the more frequencies it contains

"(and thus the more modes it may excite) the better the identification.

In summary, the continuous-discrete EKF method is recursive, can operate on nonlinear

problems, and can compensate for poorly-ordered models and measurement noise through the

judicious use of Q(t) and R[k]. If necessary, higher order nonlinear estimates ’can be employed

to further refine the identification. However, solving continuous projections of the x vector and

P matrix can be computationally intensive, model order mismatch can prevent convergence, and

only white noise models accommodated easily. See Table 1.1 for a comparison between the two

methods.

Forinformation on the effects of the various noise parameters on the convergence time of

the EKF in l-D, see Appendix 7.15, for more general information see 7.14, 7.16, and 7.18. For

more information on the Gauss-Newton algorithm, see Appendices 7.5, 7.6, 7.8, and 7.12.

Algo-

rithm

GN

EKF

Real-time

possible?

No

Yes

Computational

expense

Heavy

Moderate

Noise

robustness

Good

Good

Accuracy with

full

measurements

Excellent

Excellent

Accuracy with

few

measurements

Ok

Good

Handle

iineaities?

Not well

Limited

Table 1.1. Relative qualities of the Gauss-Newton and the Extended Kalman Filter algorithms

High

DOF?

īNo ..

Limited

References

Lennart Ljung (1987). "System Identification theory for the user". PrenticezHall,
Englewodd Cliffs, NJ. ISBN 0-13-881640-9

J.E. Dennis and R.B. Schnabel (1983), chapter 10. "Numerical Methods for Unconstrained
Optimization and Nonlinear Equations", Prentice-Hall, Englewood Cliffs, NJ. ISBN 0-13-
627216-9

Gelb, A. (ed. 1999). "Applied Optimal Estimation", The M.I.T. Press, Cambridge, MA.
ISBN 0-262-57048-3.

Flaw detection and identification algoritlan

Loads M, K,/kin,
Uses th2mf to estimate
Fd, Gd, Hd, uses
progression (JVC) to

simulate y

Sim Discrete

Flaw Detection

Mord, Nx, Ny, k

NO

u, ysim

Load in measured y
arid tl

Discrete Model
Builder

I tl, y
K.F_Caller <

~(Mord, Ts, Tstar~, Tfinal, Nx

~
Loads original "best guess" M, K

/ with no changes
Model_Est ¯

~M, K, Ts, Tsfat-t,, Tfinal, Mold

~
Uses manual method QVC and
GAC) to build Fde, Ode, Hde

~Fde, Gde, Hde, Rw, Rv, Po, xink

~ Calculates predicted y, "

KF innovations, and Ree

Model matches,
end

Figure 1.3. Flow of the flaw detection and
identification algorithm using the GN search

New F, G, H matrices
ihat match y, u~

Findflaw ~ Fn, C-n, Hn

Loads in "best guess" M and K
Estimation parameters/ma, Ak
i.~.i~ed to zero

1(

Chapter 2. The Models

The models used in these experiments were finite element models supplied by the MEs in

the form of a mass matrix M and stiffness matrix K. The damping matrix was constructed by

using a linear combination of M and K, which will be discussed shortly.

The matrices M and K are stored by the ME programs as lists of ASCII numbers saved in

some weird Unix form with names like KG.INFO and K.PTRS. There are 10 fites in all, 5 that

that describe the K matrix (K.*) and 5 that describe the M (KG.*). So that we can use them,

these are opened in Microsoft Word as "plain text" files (the default), and saved with the same

name with ".txt" appended (again the default).

the PC.

A program with the structure [M, C, K]

This translates them to a readable .txt format for

= r±les2MCK is then called to translate the flies.

Before you use it, be sure to change the directory that the files are in on line 16 (this wasn’t used

enough to polish up very much). It in turn calls the real translation program, Vi:tos2Maeices .m.

This program.takes the gobbledygook that the MEs used and turns it into matrices that Matlab

(and we) can understand. The same routine can be used to translate the ME acceleration data

into vectors using Files2accel .m which calls Files2Matsaccel .m. The directory locations

for both the input an~ output files have to b~ set within the calling program each time they are

used. The translational programs do not need to be changed each time.

Using the above we can recover the matrices used for the different types of FEM we are

interested in. They tend to have rounding errors present, but that isn’t important as we have to

build up the matrices on the fly in our identification programs as the number of independent

variables is much smaller than the number of members in the matrices. We use the matrices

given to us by the MEs only to check our model construction process. "

2.1 Building K given the identification parameters

Simply having the correct forms for M and K do us little good for identification purposes.

The reason is that there is an underlying structure that dictates how the matrices are constructed

according to how the FEM is calculated. The M matrix is usually quite simple, but the K matrix

can be complex due to the cross-connection between members. For example, for a five DOF

system the M and K matrices are as follows:

II

M~

5045 0 0 0 0
0 5045 0 0 0
0 0 5045 0 0
0 0 0 5045 0
0 0 0 0 3809.9

3.2443e+006 -1.6222e+006 0
-1.6222e+006 3.2443e+006 -1.6222e+006
0 -1.6222e+006 3.2443e+006
0 0 -1.6222e+006
0 0 0

0 0
0 0
-1.6222e+006 0
3.2443e+006 -1.6222e+006
-1.6222e+006 1.6222e+006

However, there are actually only 5 independent variables in K. If we call them El, E2, E3, E4.

and Es, K looks like this:

EI + E2 - E2 0 0 0

- E~ E~ + E3 - E3 0 0
¯ K = 0 - E3 E3 + E4 - E4 0

0 0 - E4 E4 + E5 -E5

0 0 0 -E~ E5

It is clear that K is symmetric and that even though there are 13 members, symmetry and

structure drops the number of independent variables to 5. This is also the correct number of

unknowns for a 5 DOF system, so this is what we use as our identification parameters. If we use

the symmetric members (of which there are 9), we are overspecifying the problem. This can

prevent the algorithm from converging, but sometimes it will converge to an answer in which

only the independent variables are changed and the dependent ones are unchanged. I will

discuss this more in Chapter 4.

So now that we know there is internal structure to the K matrix, how do we construct it on

the fly given the n independent variables (n = # DOF)? This is a more involved question that

entails digging into the methods used by the MEs to construct the FEM. The files used to do this

calculation are TH#DOF.M, where # is the DOF. These files in turn call more files (kcolumn.m,

12

kbeam.m, elem#.mat, nodes#.mat) which have to be prepared for each new model. I’ll go over

that process now.

The ME FEM representation

The way the MEs represent the FEMs that I have used in these experiments are like a

lattice. Each connection point represents a node where different elements are joined. The same

lattice can have many different DOF depending on the restrictions placed on the nodes. For

example, the 10 DOF lattice is shown in Figure 2.1. There are 24.nodes and 35 ~lements,

although there are only 10 DOF. The 10 DOF model is derived from the more complex lattice

by specifying which nodes are fixed and which are free to move. In the 10 DOF model, all the

nodes to the right of the first column are fixed to moved with the nodes in the left-most column.

For example, nodes 6, 7, and 8 are all "slaved" to node 5. Likewise nodes 14, 15, and 16 are all

slaved to node 13. In essence, this reduces the 5 story, four column building to a 5 story, 1

column "stick figure’" while keeping the structure physically realizable.

Decoding the ME files

In order to know how the models are coristructed and keep track of which nodes are slaved

¯ . to which other ones, the MEs use three files: e3.eaa, t:xt: (describes the types of elements and how

they are connected), eqn. txt (describes the nodes and their relationship to one another),

readrae, txt (contains the specifications for the elements). These files are cryptic, and require

decoding.

We’ll start with e~.era, t:xe. It is contained in the icon on the right-just click to

open (if you have a paper copy, it is appended to the end of this chapter). It contains a ~l,,.txt

list with four columns. The first is the number of the element, the second is its type (in this case,

type 1-5 are column elements, types > 5 are beam elements). Each type has its own

specifications which are spelled out in the teatime, t:x~: file), and the thirdand fourth columns are

the nodes to which the elements are attached. All of these elements are simple beams, they only

attach at two nodes. For more complex elements more attachment points may be included. All

of this information is used later in ehZ0dof. ~a to construct the M and K matrices.

The information in eqn. txt is not so straightforward. It is also included on the

right or at the end of this chapter. It has ten columns, the first of which is just the node ~qn. txt

number. The next three are the position of the nodes on the grid (usually in inches), and the next

six tell which equations of motion are associated with what possible node motions. The first

13

ELEMENT

9

5

21

blue = nodes
red = elements

22 23

17

13

9

5

33

3O

27

24

21

18

14

10

6

2

34

18
31

14
28

10
25

22

2

19

,.19

15

11

,.11

7

7
:

3

3

35

32

29

26

23

2O

16

12

8

4

24

20

16

12

8

4

NODE
Figure 2.1. FEM lattice for the 10 DOF model.

three columns of the six are translational motion and the last three are rotational. For example,

in the 10 DOF lattice above the first four nodes are set into the ground (fixed) and cannot move

at all, so they have no equations of motion associated with them. Node 5, however, is free to

move, but only in the linear x direction (eq-x) and the rotational z direction (eq-rz). These

assigned to equations 1 and 2, respectively. Nodes 6, 7, and 8 are assigned the same equations of

motion and are therefore constrained to move exactly like node 5. This is how some nodes are

restricted, lowering the total DOF of the model. Note that there are only 10 equations,

corresponding to the 10 DOF.

Building the K matrix from the identification parameters

14

The K matrix we need to use in the identification process (K global) is composed

smaller k matrices (k local) added together. The 3D local k matrix is calculated by first

constructing k_loeal in both kboara, m and kco~.uran#, rn:

k_ local =

0 12EIz///LL3 6EI~//~L2 0

0 6EI~L2
4EI ~//~L 0 - 6EI~//~L2 2EIz//~L

0 0 0 0
0 -12EI~/~L 3 -6EIz~L2

0 12EI~//~L3 6EIz~L2

6EIz//LL2 2EI~//~L0 0

0 0

where E = stiffness coefficient (parameter), A = cross-sectional area in in~= width*depth, L

length (inches), and Iz = rotational moment of inertia (all given, usually in a teatime, t:x~: file).

For the 5, 10, and 50 DOF models the E that is multiplied by I is varied, while the E multiplied

by the A is considered constant. Once k_loeal has been built given the latest estimate of the E

values, it is transformed into the k matrix using a transformation matrix T:

k = TT ̄ k _ local. T

where

where

c sO 0 0 0

-s c 0 0 0 0

0 0 1 0 0 0

0 0 0 c sO

0 0 0 -s c 0

0 0 0 0 0 1

c = cos(l
s = sin(13)

15

and ~ = ~/2 in this case. For each element type, the subroutines kbeam# .m and kcoluran#

where # is the DOF, must be constructed to accept the identification parameters and return the

local k matrix. So far, though, kbeam, m is the same for all models.

Now that we have k, we need to know what members of it we should use to build K and

how to add them together. This process is involved, but I’ll do my best to explain it

and then we’ll look at an example. It might help to open up th~.0DOF.m and follow
I ThlOdo f .m

along at this point. I have imbedded it in the document for your convenience.

The information in elera, txt and eqn. txt are stored in .mat files called eleml0 .mat.and

nodes10, mat. In each .mat file is a matrix with the information contained in the text file.

For each element, the elements and nodem matrices are loaded in from the elem~.0, mat

and the nodesl0, mat files. The element type is determined using the second column of

elements, and that is sent to kbeam, m or kcolumnl0 .m and the proper k matrix returned. The

nodes that the element connects with are determined using the third and fourth columns of

elements. The equations associated with the element can then be determined by examining

columns 5-10 (I restricted it to only 5,6, and 10 in thl0DOF.m to speed it up) of the nodes. These

in turn give us the local and global indices through the find command. We then proceed to build

K using k and the indices calculated using the find command. Let’s take a look at one step of a

calculation.

Example: Calculating one section of K due to one element

In this example we’ll follow the calculation of the K contribution for element 5 in the 10

DOFmodel. We’ll start at the element loop (for ra = l:length(elements)

eltype = 2, so this is a column element, therefore we call kcolumnl 0. m. and get

4.0554e+005 0 -2.9199e+007 -4.0554e+005 " 0 -2.9199e+007

0 1.3455e+007 0 0 -1.3455e+007 0

-2.9199e+007 0 2.8031e+009 2.9199e+007 0 1.4015e÷009

-4.0554e+005 0 2.9199e+007 4.0554e+005 0 2.9199e+007

0 -1.3455e+007 0 0 1.3455e+007 0

-209199e+007 0 1.4015e+009 2.9199e+007 0 2.8031e+009

and

nodes = [5 9]

].oc

glo

nodeqn = [i 0 2 3

lind = [I 3 4 6]

gind = [i 2 3 4]

li = length(lind);

Now, solve for all two-member permutations:

1 1

1 3
1 4
1 6

3 1
3 3
3 4
3 6
4 1
4 3
4 4
4 6
6 1
6 3
6 4

6 6

1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
3 1
3 2
3 3
3 4
4 1
4 2
4 3
4 4

0 4] (these are the equations

associated with the nodes)

(local indices, these are the locations of nonzero equation #)

(global indices, these are the equation numbers)

Finally, build K:

for i = I:ii^2
K(glo(i,l),glo(i,2))

end
= K(glo(i,l),glo(i,2)) + k(loc(i,l),loc(i,2));

This builds up K from all its former versions. The final step is where roundoff errors are

removed using the flush, m command. The roundoff errors are present because large (~ l0s)

values are added and subtracted together and sometimes they don’t quite equal zero when they

should due to roundoff problems.

M is just considered constant and recalled from the original stored matrices. It is simple to

make the members of M identification parameters (see f iveDOF, m for an example), but was not

considered necessary as the mass of the different members can be described frith pretty good

accuracy and should not change much after a subtle damaging event.

Calculating C

Now that we have the M and K matrices, we need to calculate C to be able to parameterize

the model completely. The way this is done is to form a linear combination of the M and K

matrices according to the following method: First, the eigenvalues of the M~K matrix are

determined (the natural resonances of the system without damping). There will be one resonance

per degree of freedom of the system. The first and fourth, 0)~ and ~ (in radians) are used with

the estimate damping percentage to calculate the coefficients a0 and a~:

2d0)~0)4
ao --

0)t + 0)4

2d
al=

0)~ + 0)4

so that finally

C=aoM+a~K.

Summary of model construction

To summarize, for each model several files must be constructed. They are:

1. A .mat file that contains the M and K matrices as given by the MEs (i.e. ~.0t, lct<.mat).

2. The e~.eraents and nodom matrices, from e~.era, txt and eqn. txt.

3. kco~.unua# .ha and kbeara# .m, where # is the DOF. Returns the local k matrix given the

identification parameters.

4. get:pars#, m, a function that returns the default initial estimate of the ID parameters.

5. tb#DOF, ra, builds the theta model for the system in Matlab. Just returns the M, C, and

K matrices if used with the EKF (named th#DOFMCK, m in that case)

6. obsmat#.mat, a vector describing which nodes (really equations) are measured. A one

is entered for observed equations, a zero for unobserved equations.

2.2 The simulated 5 story structure models (5, 10, 50, 400 DOF)

These models all describe a 5 story, building with varying amounts of complexity. The 5

D̄OF model only allowed x-translational motion at the left five nodes, the 10 DOF allowed the

same five translational motions as the 5 DOF but added z-rotational motions as ~ell. It is

considered a better model, so after its introduction the 5 DOF model was not used. The 50 DOF

model was just the 10 DOF with each column subdivided into 5 sections, so there was a total Of

25 nodes, each with a x-translational and z-rotational DOF and with different masses on the floor

nodes and column nodes. The 400 DOF subdivided the columns into 10 pieces and also freed

the nodes to the fight to move on their own. This resulted in 200 nodes, each with. 2 DOF.

2.3 The NTS 5 DOF structure

The NTS 5 DOF.structure is a different animal entirely. In

order to keep the numbers of DOF down (to help speed processing

and debugging) this model is a shear model, which has different

identification parameters from the simulated models above.

Instead of E, we use the shear parameter tXy. This is because the

model is completely insensitive to changes in E, but quite sensitive

to changes in tXy (see chapter 4.2 for a discussion of this). Other

than that, the way that the model is constructed from the ff, y

parameters is the same. The only difference is in the calculation of

k in kcolumnNTS5, m.

2.3.1 The NTS data

A large physical model of a five-story building was available

for our use at the Nevada Test site, so on February 24, 2000 we

went there to instrument and record its response to both sinusoidal

and white noise excitations. The people present were myself, Dave

McCallen, Matt Hoehler, and Tom Woehrle. The model (seen in Figure 2.2. NTS structure.

Figure 2.2) was built with steel pipes and shelves, was 14 feet high, with floors that were about

square foot in size weighted with lead bricks. It was excited on the third floor via a stinger from

a freestanding shaker supported from a sling. The stinger was as on-

Channel # Location Direction Accelometer type

1 CL 3ra floor +y LC

2 Ist floor +x 63A 172

1st floor

1st floor

+y

4 +x

5 2"a floor +x

6 2na floor +y

7 2na floor +x

9

10

11

12

13

14

floor

floor

floor

floor

floor

floor

floor

floor

floor

15

16

+x

+y

+x

+x

63A 172

3134

63A 120

63A 120

3134

63A 184

63A 184

3134

63A 160

+y 63A 160

+x 3134

+x 63A 113

+y 63A 113

+x 3134

Sensitivity(mV/g)

103.5

449

431

500

4’78~6"

479.5

500

456

424

500

425.7

424.1

500

431.4

419

500

Table 2.1..Data for the accelerometers from the NTS experiments.

center as possible in order to reduce torsional modes and emphasize translational ones. A

drawing of one of the floors appears in Figure 2.3. The points u and t are associated with the

accelerometer mounting, for more information ask Dave McCallen.

The accelerometers used and their characteristics are shown in Table 2.1. I don’t

remember why there where two +x accelerometers per floor, as I have only ever worked with the

signals in the +y direction, in line with the excitation, The sensitivity was used to convert

between volts and g’s. However, the data were recorded in 12-bit bins, from -2048 to +2048.

The maximum voltage allowed (see Table 2.2) was varied in each experiment in order to get the

best resolution. The samples to g conversion sequence was as follows (found in r~’rs2asc±~..

Voltage correction factor (VCF) = max voltage / 2048 (as per channel and experiment,

see Table 2.2)

2C,

Sensor calibration (SC) = V/g (in column 5 of Table 2.1)

g data = sample data * VCF * SC

The data stored in the .mat files is in g’s as calculated above. However, unbeknownst to me at

the time, this was in English unit g’s, to translate to inches per second squared we still have to

multiply by 386.4. This is done after the data are read from the .mat file in files like EKF_NTS. m.

There were two types of inputs used: a

swept sinusoid and white noise. The swept

sine was started at 3 Hz and went up to 50 Hz

in ¼ Hz steps, staying on each frequency for

50 cycles. Therefore the lower frequency

excitations took the longer time. Each swept

sine experiment took several minutes to

record. The white noise was supposed to

contain frequencies between 0.25 Hz and 51

Hz, but in actuality went from about 5 to

about 55 Hz (see Figure 9 of Appendix 7.20).

Each white noise input file was

recorded midstream (a.fter any transient

vibrations associated ~vith startup had

dissipated) for 60 seconds. The sampling

frequency was 400 Hz. The filenames were

done in the following manner:

TOP VIEW.

C) CY ’’p°les

/

×
I . t

Excitation

Figure 2.3. Floor plan of the NTS structure.

/°Iw~rchannel~x~repetiti°ntbin, d_o s)~ #)~
struc

where o/d/b denotes either original, damaged (the two inner pipes were removed to simulate

damage), or background noise and w/s either the white or swept sine input. Thus strueow3xS.t~in

is the original structure, with white noise, the third channel, and the fifth repetition. The data is

located on the P3-450 machine under HADatakStructureL

The .b±n files were read into Matlab and saved as .mac files, 16 files per .mat file. They

were saved using the same convention as above but omitting the channel # and the spacer x.

21

Thus strucdsl, mat is the data from the damaged structure, swept sine input, first repetition.

They contain u 1 (the input, channel 1), and y l through y 15 (the outputs, channels 2-16).

.mat files are located in HAData\StructuresWlats.

Experiments

The experiments went as follows, # represents the channel number:

Exp # Filenames Reps Vmax ch. 1 Vmax ch. 2-~6

1 strucos #xl. bin I +- 1.0 Volts +- 1.0 Volts

2 strucow#xl : 2. bin 2 +- 1.0 Volts +- 1.0 Volts

3 strucow#x3:5.bin 3 +- 1.0Volts +-0125Volts

4’ strucos#x2, bin 1 +- 2.5 Volts¯ +- 2.5 Volts

5 strucds#xl .bin 1 +- 2.5 Volts +- 2.5 Volts

6 strucdw#xl :’5.bin 5 +- 1.0 Volts +- 0.25 Volts

7 strucdb#x 1:5obin 5 +- 0.1 Volts +- 0.1 Volts

Table 2.2. Filenames and maximum voltage limits for the NTS experiments.

Comments:.

1. First attempt, all channels +-1.0 V, some clipping

2. 2 recordings of white noise input, +- 1.0 V.

3. 3 more recordings, decreased V,,ax to +- 0.25 V for channels 2:16 to increase resolution

4. Redid of # 1 because of the clipping

5. Damaged swept sine input

6. Damaged white input

7. Background noise measurement, all channels +- 0.10 V

Elem.txt for i0 DOF

BEAM ELEMENT data

m, mtyp nodel node2
1 1 1 5

2 1 2 6

3 1 3 7

4 1 4 8

5 2 5 9

6 2 6 i0
7 2. 7 ii

8 2 8 12

9 3 9 13
10 3 10 14

ii 3 ii 15

12 .3 12 16
13 4 13 17
14 4 i4 18

15 4 15 19

16 4 16 20

17 5 17 21

18 5 18 22
19 5 19 23

20 5 20 24

21 6 5 6
22 6 6 7

23 6 7 8
24 7 9 10
25 7 I0 Ii

26 7 ii 12
27 8 13 14
28 8 14 15
29 8 15 16

30 9 17 18

31 9 18 19
32 9 19 20
33 i0 21 22

34 i0 22 23
35 I0 23 24

Eqn.txt for i0 DOF

node
1

2
3

4
5
6
7

8

9
i0
ii

12
13
14

15
16
17

18
19
2O
21
22

23
24
25

x
0.00E+00

2.40E+02
4.80E+02

7.20E+02
0.00E+00
2.40E+02

4.80E+02
7.20E+02

0.00E+00
2.40E+02
4.80E+02
7.20E+02

0.00E+00
2 40E+02

4 80E+02
7 20E+02
0 00E+00

2 40E+02
4 80E+02
7 20E+02
0 00E+00
2 40E+02

4 80E+02
7 20E+02

-i 00E+01

Y
0 00E+00

0 00E+00
0 00E+00

0 00E+00
1 44E+02
1 44E+02

1 44E+02
144E+02
2.88E+02
2.88E+02

2.88E+02
2.88E+02
4.32E+02

4.32E+02
4.32E+02

4.32E+02
5.76E+02
5.76E+02
5.76E+02
5.76E+02

7.20E+02
7.20E+02
7.20E+02

7.20E+02
0.00E+00

z
0.00E+00

0.00E+00
0.00E+00

0.00E+00
0.00E+00

0.00E+00
0.00E+00
0.00E+00

0 00E+00
0 00E+00

0 00E+00
0 00E+00
0 00E+00
0 00E+00

0 00E+00
0 00E+00
0.00E+00

0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

0.00E+00
0.00E+00
0.00E+00

eq-x eq-y eq-z eq-rx eq-ry eq-rz

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 2
1 0 0 0 0 2
i 0 0 0.~ 0 2

1 0 0 0 0 2

3 0 0 0 0 4

3 0 0 0 0 4

3 0 0 0 0 4
3 0 0 0 0 4

5 0 0 0 0 6

5 0 0 0 0 6

5 0 0 0 0 6

5 0 0 0 0 6

7 0 0 0 0 8
7 0 0 0 0 8
7 0 0 0 0 8

"7 0 0 0 0 8

9 0 0 0 0 i0

9 0 0 0 0 i0

9 0 0 0 0 i0

9 0 0 0 0 I0

0 0 0 0 0 0

24

Chapter 3. The Gauss-Newton algorithm

The Gauss-Newton algorithm, discussed in Chapter 1.1, is an iterative gradient search

method of finding the minimum value of a function. Here we will discuss the results of our

attempts to use the GN algorithm to identify the different models discussed in Chapter 2.

3.1 Simulated models

5 and 10 DOF, fully measured, no noise ~

For the 5 and 10 DOF simulated models with all translational nodes measured (thereis no

way to measure the rotational DOF), and with no noise added to the simulated measurements, the

GN algorithm worked quite well. It would typically converge in only a few iterations, the

number usually corresponding with the size of the model mismatch. That is, if the estimates of

the ID parameters was quite poor, it would require more iterations to converge, as expected. The

convergence time and accuracy of the final result would also depend highly upon the tolerance

chosen, which controls how small the error can be before the algorithm terminates. For a large

perturbation (50%, so the estimate of the stiffness was twice as large as the actual value) on one

floor, the algorithm would converge in a single iteration with 3-8% accuracy with a tolerance of

0.1, and would take.6-13 iterations with 0.4-0.9% accuracy for a tolerance of le~2. For changes

on. more than one floor of varying amplitudes the result was the same. In this region, the GN

’ algorithm performs quite well.

1̄0 DOF, not fully measured, no noise

The GN algorithm did not perform as well here as it was hoped. One reason is that as it

uses a constant Kalman gain, it is essentially a Wiener filter that requires measurement of every

node. As a result, I had to modify it so that it thought it was getting measurements at every node.

There are two ways to do this: One, use the modeled outputs as the measured ones, thus forcing

the residuals to zero for those particular nodes. Since they are zero, there will be no change

calculated for the nodes that aren’t measured. This seems to work well, but its effect on the

accuracy of measured nodes is not well understood. The second is to "collapse" the matrices

used in calculating the gradient so that only rows that correspond to measured nodes are included

in the gradient calculation. Then the updates that are calculated are only applied to the measured

nodes. This is more computationally efficient, as a 50 DOF system with only 5 measurements

takes about the same amount of time to compute as a 5 DOF system. It does require slightly

25

more overhead, but speeds up the computation of large systems substantially. At this point it is

important to keep in mind that we are still assuming that we can somehow derive the position of

the nodes, either from the acceleration or from direct measurement. This was because in order to

update the state equations we had to have information on the states, which are displacement and

velocity. This was to cause problems, as we shall see.

The results for what I call my "standard perturbation" (the actual parameters are 7/8, 3/4,

9/10, 1/3, and 2/3 of the estimated parameters) are shown in Figure 3.1 at the~end of this chapter.

A summary of the parameters used were as follows:

k = [7/8, 3/4, 9/10, 1/3, 2/3] * k0;

No g restraints

Pars0/100 < pars < 2* pars0

Kalman gain = eye(ra,r)

No noise, determinant criterion

all members of parameters varied, some significantly

no restrictions on search vector magmtude

parameters (th.eta vector) restrained

Kahnan gain is tlae identity matrix (default, not optimal)

original aJgo used trace criterion

Measured nodes are denoted by cross-hatching, and the mean identification error is

represented by the size of the bar on top of each model. The results are not too surprising - Since

the most poorly modeled states are 4 and 5,. if they are both not measured the errors are usually

high: 32, 47, 43, 179% errors. However, there was one experiment where states 3, 4, and 5 were

not measured and the mean error was only 4.7%. This is better than when only states 4 and 5

were not measured - 32%! This shows that for the G-N algorithm, sometimes measurements can

actually hurt accuracy, depending on the model and the size of the mismatches.

Another large error was when states 1,2, and 4 were not measured (89%). When the

algorithm was run again with state 3 not measured, the mean error improved to 11%. Again,

measurement of state 3 can be detrimental to performance. It could be because of the large

change in k between the third and fourth floors, or just due to the inconsistencies of the G-N

algorithm.

Overall, the results show that good to excellent (error rates from 0.02% to 0.67%) results

for three measurements with the exception of states 4 and 5 unmeasured (32%, expected due to

the large changes in k for elements 4 and 5). For two measurements there was much poorer

performance (0.28, 4.69, 18.3, 26.8, 80.5, and 88.8% error) and for a single measurement the

26

best we could do was 6.6% (state 4 measured) and the worst was 179% (state 3 measured).

seems to indicate that it is possible to model the structure relatively well with only one

measurement if it is taken in the right place. In this case, state 4 was very poorly modeled

(actual value only 1/3 of modeled value) and so a measurement there helped to converge the

solution. On the other hand, state 3 was modeled the best (actual value 90% of modeled value)

and so a measurement there was.not always helpful - in some cases, it was actually detrimental

to performance. ~

50 DOF, full and partial measurement, no noise

In this experiment, the columns of the previous five-story building were discretized into

five sections apiece, each with a translational and rotational DOF. The five floor nodes were

always measured, and the location and size of the model mismatch was varied. Unlike the 10

DOF, for 50 DOF the GN algorithm does not converge perfectly to the actual structure in the

absence of noise even with all 25 (not just the 5 floors) translational nodes measured. The best

we can usually do (for small changes in k such as 5-10%) is converge to a mean error on the

translational degrees of freedom of about 5%, far worse than the 10 DOF case. We will discuss

possible causes of this inaccuracy later.

In the following simulations all perturbations to the stiffness elements were to reduce the

stiffness (EI) constant by only 10% to 90% of its nominal value, a small perturbation that the

algorithm should converge to easily as the residuals should be small. In the first set of

simulations all nodes are assumed measured, and in the second simulation only the floors (nodes

5:5:25) are measured. Keep in mind that the things that are measured are nodes, while the

algorithmic parameters are the stiffness values for the elements, which are attached to other

elements at the nodes. The structure is arranged so that element 1 is between nodes 1 and 2.

Thus to observe node 5 is to be able to affect elements 1 and 5 (see Figure 2.1). However, the

nodes as given in Figure 2.1 do not match up with the equation number, and can be confusing as

there are many more nodes than equations. For simplicity I sometimes assume tl~ere are only 5

nodes, each with two DOF. This is a stick model with the lowest (fixed) node not counted. Thus

node 1 is between elements 1 and 2, and node 5 is at the top by itself. See Figure 3.2 for a

representation of the stick model. The context should make it clear if I am referring to the stick

or the ME model.

27

The algorithmic details are:

No g restraints, Kalman gain = default

Parso/100 < pars < 2* pars0

No noise, trace criterion

Results (all translational nodes measured):

% par{mleter,.s I theta vector)resl.rait~c.d

NODE 5

NODE

) NODE

NODE

Ideally, the algorithm should converge to the answer with a negligible error since we are

not including any noise in the process. However, the identification error varied from 0.3% to

more than 30%, without any obvious trend to the accuracy. Clearly more work is needed to

improve the behavior of the GN algorithm when faced with large DOF systems.

Results (only 5 measurements):

The results were not too surprising, in that damage to

elements connecting unmeasured nodes was not readily Er.Et, l~ 5

calculable, with nodes that are farthest from the measured

nodes suffering the largest errors. The unmeasured node

damage was reflected in the measured node calculated damage.

The results are shown in Figures 3.3, 3.4, and 3.5, at the end of
ELEMENT 4

this chapter. I have observed the following:

¯ 1. The problem of convergence is not simply an observational

problem. This is illustrated by the first and final plots of "ELEMENT 3

Figure 3.5, where we see that even when observed modes

are perturbed, the results are only accurate to within about

7%. I believe this is a function of the search algorithm, as
ELEMENT 2

right now the update is calculated as

8 = 0 0 +k g NODE 1

where 0 is the parameter vector, g is the search direction,
ELEMENT 1

and ~, is a constant. If all but one or two of the parameters

are near their optimal value, the value of ~, becomes very

small, making convergence to the correct 0 unlikely. I tried

making ~, a vector as well, which gives the algorithm the

ability to tailor the update vector so that systems with many

NODE 0
(fixed)

Figure 3.2. Simplified 10
DOF stick model

28

degrees of freedom can be minimized (pem_sparse_vectork.m). This was unsuccessful

well, indicating that perhaps for 50 DOF the gradient search may be ineffective - the

function that we are attempting to minimize may have too many local minima.

2. The farther away from the observed nodes, the poorer the convergence. This is expected, as

the farther we move away from the measured nodes the less information we have about the

actual state of the system. This cannot be avoided in the present incarnation, but the effects

of the perturbations on the unmeasured nodes can be noticeable on the measdred nodes. For

example, in the fourth plot from the top of Figure 3.5, element 8 was reduced to 0.90 of its

normal value. The system was unable to reduce element 8 to its correct value as it was not

measured. However, to compensate, the values for elements 5-6 and 10-11 (the four

elements closest to measured nodes, which the algorithm can change easily) were increased

by 4.0, 3.7, 3.7, and 2.7% respectively. These are the largest errors of elements text to

measured nodes in the system, and reflect the perturbation of the element located between

them. This phenomenon did not always occur each time significant perturbations were made

to the structure between measured nodes, but it could be quite useful as a diagnos.tic tool and

for generally locating model mismatches in large models.

3. The convergence is still not good for many perturbations. In Figure 3.5, the first and second

plot, it is clear that the convergence is only good near nodes 10 and 15. Near the others the

error is still large. This would seem to indicate that the best convergence occurs in the

middle of the structure. It also demonstrates that if many elements are perturbed or poorly

modeled, the entire structure will not converge readily.

Conclusions for the simulated systems

For the simulated systems, the GN algorithm worked quite well if there was no measurement

noise, the DOF was 10 or below, and all of the translational nodes were measured. If full

translational measurement did not occur, the identification accuracy can vary widely, depending

on the strengths and weaknesses of the model.

3.2 NTS 5DOF model

Processing the NTS data introduces a host of difficulties not encountered when operating in

the comfortable simulated world. The measurements are accelerations, not displacement, and

they are noisy, with both low frequency drift and random additive noise. Also, the real NTS

29

structure, a 14 foot high steel-and-lead model, has more than a few DOF and oscillates in 3-D.

The challenges this presented were many and varied.

Working with the data

In the algorithm above, the states are assumed to be the position and velocity of each node. This

allows a convenient description of the problem in state-space. Our data, however, is measured in

acceleration. Originally (and somewhat naively) it was believed that we could simply filter the

data with a 1 Hz highpass filter and then use a perfect integrator twice to con~ert to

displacement, as displacement is used as the state of choice during our 5 and 50 DOF simulation

trials. However, there is some noise in the signals, which for the moment we will consider

white. Larry pointed out that if you integrate a noise signal with a unity frequency spectrum, you

get a noise spectrum of 1/~s. Do it again and now the noise spectrum is ~s2 , indicating that the

noise has been significantly "reddened", the noise at low frequencies has been increased.

Depending on the noise level, it is possible to significantly distort the calculated displacement

signal. Also, our modeling assumes white noise and will not operate as efficiently for reddened

noise. Thus, we must either find another way to convert the acceleration data to p~asition or

change the G-N algorithm to work with .acceleration, not displacement. I chose the latter.

Using acceleration instead of displacement

The first step in changing the algorithm to work with acceleration was to change the way the

innovations are calculated. For this problem, modeled as a series of simple harmonic oscillators,

the equations of motion are

M~+C~+Ky =u

so that acceleration is r~lated to velocity and displacement by

u Cs ¯ KS
Y M M

where M, Cs, and Ks are the system mass, damping and stiffness matrices resp~tively. This

means that the innovation is now represented by

M y[’n]- ~-y[n]

since the measurement y[n] is now acceleration. The criterion is unchanged.

3(

However, this is not the only change. Indeed, the calculation of ~ has changed

significantly due to the redefinition of the innovation. For displacement, from above:

~[n + 11 = A. ~[n] + B. u[n] +K. e[n]

~,[n] = C. ~[n]

and for acceleration:

u[nl Cs xv[n]- x,[.n,]
~[n + 1] = A. ~[n] + B. u[n] +K. y[n]- ¯ M - M

~

U C., ¯ Ks
~,[n] = ~-- M Y--~-Y =-[M-IKs M-IC’]" ~[n] + M-’ .u[n]

where y[n] is now an acceleration measurement and xd[n] are the displacement states and xv[n]

are now the velocity states. Defining

xd = C~x’

x~ = CvX

where Cd is the same as our old displacement C, we can write the above as

KC.C. . ~[n] + B - ¯ u[n] + N- y[n]~[n+l]-- A÷~
M

or

~[n + ll=[A + KDCsC, + KDKsCd]" ~[n] + [B-~ KD]. urn] + K. y[nl

9[n]----[DKs DCs]’i[n] + D.u[n]

so that we may now write

~=ltittA+KDC~C,+KDK,Ca, [K B-KD~ [Yu]’ x0/

with D = M~.

Now that we have ~, we can proceed to the calculation of the G-N gradient, which is

v(n 10) d(9(n I 0)= (-[DK,
dO

(-[DK: +D’K, DC’,+D’Cs].g[n] + D’.utn])

where Vx and ~u are the derivatives of g and u with respect to 0 and X’ denotes the derivative

of the matrix X with respect to 0. Since the input u is obviously not dependent on 0 that term

can safely be ignored. What is left now is to calculate Vx, the derivative of g (Eq. 3).

Vx[n ÷l]=[A + :DC Cv ++ [A’+ K’DCsCv + KD’CsCv + KDC~C~ + K’DK~Cd + KD’K~Cd ÷ KDK~Cd]. ~[n]...

+ [B’- K’D- KD’]. u[n] + K’. y[n]

This can be calculated using LTITR:

I
A + KDC,Cv + KDK~Cd,

A’+K’DC,Cv +KD’CsC~ +KDC~C~ + K’DK~Cd + KD’KsCd + KDK’,Cd ...

...K ~ B’- K’D- KD’,
V, = Ititr. -x-

After all these additions are made, the algorithm is almost ready to. run.

The search for K

As mentioned in Chapter 1, in the GN algorithm the Kalman gain K is calculated by

K = PC~R~~

where P is the state covariance matrix, C is defined above, and Rv is the measurement noise

covariance matrix. However, this assumes P is constant, not always a good approximation. The

Kalman filter algorithm normally does not assume P is constant, and calculates a new, corrected

P at each time step:

"P = (I- KC)Pp,

where I is the ideiatity matrix and Pp is the predicted measurement for the time step. Thus K can

be expressed as:

K = PpCr (CPpCr + Rv)-’

However, we are still faced with the problem of what to use for Pp and R~. The equation

above is used at each time step in a Kalman filter algorithm, and LTITR.M does not do that. It is

only an LTI kernel propagator, and assumes the K it is given is constant.

So really the only way to effectively implement the Kalman filter is to dverhaul

PEM_SPARSE.M so that is uses a full-fledged Kalman filter algorithm. This would emulate an

optimal filter approach and almost certainly cause the accuracy to improve. This is the path

chosen for the EKF algorithm.

31

32

Bad data on sensor 127

I have noticed that the data from sensor 12 (fourth floor, +x direction), while of the correct

magnitude, seems to be lacking in high frequency components. In Figure 3.6 the PSD of sensor

12 is compared with sensors 3, 6, 9 and 15, which were oriented the same way as sensor 12. It is

clear that there are not as many high frequencies in sensor 12’s spectrum.

Conclusions for NTS 5 DOF data ~

The simple algorithm PEM from Matlab has been substantially changed in order to operate on

the NTS structure. The acceleration is used as the input to the system so that no transformation

to displacement is required. However, the algorithm can be improved by implementing the full

Kalman filter algorithm for state estimation, which we will explore in the next Chapter.

In addition, we may have to limit ourselves to analyzing data below about 35 Hz in order to

compensate for sensor 12’s inadequacies. It is not clear at this time if any of sensor 12’s data is

useful, we may have to try and update the model without it. As it is only one sensor, the loss

should not affect the accuracy more than a few percent. I have tried both lowpass filtering all

channels below 38 Hz and assigning the measurements from channel 12 a very high uncertainty

(so they will be ignored) and neither method seemed to help convergence, but that is probably

problem with the model itself and not sensor 12.

Conclusions for the GN algorithm

It was decided that the Gauss-Newton algorithm was not the best one for our purposes. It

works well for a small number of DOF, but is not be sensitive enough to correct localized

disturbances in large DOF structures, which is really what we are trying to do. Also, it does not

operate easily on acceleration data and has no way of compensating for measurement noise or

model inadequacies. In addition, convergence is sensitive to many variables - among them the

Kalman gain, the limits on the search direction magnitude and parameter values, the

robustification parameter, iteration tolerance, and the numerical differentiation step size. I

decided at this point th, at it was time to start with a clean sheet and build a real Kalman filter

based identification program.

34

yellow
X~

Error in calculation (blue), perturbed E’s (yellow), and observed nodes (green

u-i-10D ¯ ~{i i: , iI , :mean error-= ,.+

~ I0

o
tu -10

20 25

I ¢~mean error .
20 25

I F+, " " I ~:

_.j
I iimean error = 3.01°~--~

20 25

~ --

8ot~,.~
~. .

I ~mean error=2.7

Parameters

20 2~

i i! i iimean error=2.2

15 20 25

.---.~i,,-- -- -- -- A--

i i+~r~, I ;~mean.,. error = 1.62~
¯ \green "15 20 25

Figure 3.3. Calculation errors for the 50 DOF problem with 5 observations. The errors are shown in the bar
graph with the yellow bars denoting elements that were perturbed to 90% of their nominal value and blue bars

denoting unperturbed elements. The green lines indicate where the measurements took place.

35

Error in calculation (blue), perturbed E’s (yellow),

:;,. ’;~ !i"

I i!. I ,"] I ~

5 10 15

observed nodes (green x’s)

I mean error= 1.01
20 25

mean error = 132

20

t ~imean error= 1.27
20 25

I i~:i mean error = 1,95°,~ -~iI ~.~ .,
6 I 0 20 25
= ,., ~ ~; ~ i; ~ ’

--.- .,,. i~’i -- -- -- ~"’ --
- :~ ilmean error = 2.4

10 15 20 25
Parameters

Figure 3.4. Calculation errors for the 50 DOF problem with 5 observations. The errors are shown in the bar
graph with the yellow bars denoting elements that were perturbed to 90% of their nominal value and blue bars

denoting unperturbed elements. TIr~ green lines indicate where the measurements took place.

36

-10

I0~-I0

Error in calculation (blue), perturbed E’s (yellow),

_1

observed nodes (green x’s)

~ ~!mean error= 0.859

20 25

I ~imean error= 2

20 25

~ i!mean error= 0.558

20 25

I ~mean error = 1.68
20 25

~ ~:~ ~ :

!imean error= 0.596I
20 25

~:..

~rnean error = 0.933I
20 25

Figure 3.5. Calculation errors for the 50 DOF problem with 5 observations. The errors are shown in the bar
graph with the yellow bars denoting elements that were perturbed to 90% of their nominal value and blue bars

denoting unperturbed elements. The green lines indicate where the measurements took place.

3’;

Psds for sensors 3, 6, 9,12,15 (floors 1-5) for strucow5, mat

: : ,.. .
" -5o L . .~-... ’ ~_ ’.~ ’ _/~ !/ : i ---.....j ’u-re., :~~ | ~-~ ’~LL.P>~: : : : ",C.- ~

~" ""-"’~"--’-"~"-"~"-1
0 10 20 30 40 50 60 70 80

~..~ -50 ~ ,X,~,,z" ’. ~/"~

¯ 0 10 20 30 40 50 60 70 80
O/ ~ I I I I ~

~ -50

0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80

I I I I I I I "
0 10 20 30 40 50 60 70 80

Frequency(Hz)

Figure 3.6. Power spectral densities of sensors 3, 6, 9, 12, and 15. Note the lack of power above 35 Hz for sensor 12.

Chapter 4. EKF results

The Extended Kalman filter was covered extensively in Chapter 1, and Gelb is an excellent

reference for those more interested in the details. As for results, I will begin with a comparison

of the performance of the GN and EKF algorithms for the 10 DOF simulated systems with no

noise.

4.1 Simulated models ~

10 DOF, no noise

To facilitate comparison with the GN iterative algorithm, I ran the same battery of tests on

both the EKF and.the GN and plotted them on the same plot. For the EKF, I used the following

values for the noise parameters (as outlined in Appendix 7.15, stored in v.K~’_getr~o~.se, ra):

R = 0.01 (+ 0.01 g’s) for the measured nodes, 1 x t2 for the non-measured nodes
Q,~ = Pd = (0.001)2 = (10% of max displacement)2

Qv = Pv = (0.005)2 = (10% of max velocity)2

Qk = Pk = (3.1 x 107)2 = (10x stiffness estimate)2

I analyzed 500 samples with a sampling rate of 100 Hz. The driving function was a 1 Hz

1000 amplitude sine wave applied at the first floor. The analyses took about 1.8 hours each on a
-.

P3-450 and 2.2 hours’on a P2-350.
:.

The results are displayed in Figures 4.1. The blue (right, top numbers) bars are the EKF

mean ID errors and the red (left, bottom numbers) bars the GN. It is clear that the EKF works

much better overall, with the largest error only 15.6% as compared to 179% for the GN. The GN

has better precision on the ones it does well, but it must be realized that the EKF is iterative and

will likely beat out the GN if given more samples to operate on. Therefore it is fair to say that

the EKF outperforms the GN algorithm across the board with largely equivalent computational

times. The EKF has the added advantage of being able to use acceleration data directly and is

able to operate in real time as data becomes available. It also seems to have a wider "zone of

influence", being able to converge relatively well with only a single measurement. For the single

measurements the following was observed:.

39

Measured
node

Error

element 1

(%)

Error
element 2

(%)

Error
element 3

(%)
Original -14.5 -33.3 -11.1

estimate
1 4.4 1¯7.9 -1.4

6.22 -24.6
-24.62.5

13.0

11.5

Error
element 4

(%)

Error
element 5

(%)

Mean error

(%)

-200 -50 61.7

-12.9 -16.7 10.7

-13.3 4.9

-34.51.8
1.2.4

15.0

4 1.9 -23.9 31.4 -6.3 -14,8 ¯15.6

5 -5.8 -22:1 11..2 10.4 17.9 13.5

Table 4.1. The estimation errors of the original estimate and the EKF algorithm results for a sinele
measurement and 500 samples. The errors in bold are the errors for the elements next to the node being

observed, the ones in blue are the lowest errors for that particular case and the errors in red are the
largest. Note that there is no observed correlation between an observation and the lowest error.

Keep in mind that for the stick model node (or equation) n is located between elements

and n+l, so that an observation of node 1 will yield information on elements 1 and 2 while an

observation of only node 5 will only directly observe element 5.

The interesting thing is that the mean errors are all about the same after 500 samples. The

algorithm is not terribly sensitive to the location of the largest model mismatches. This is in

direct contrast to the GN algorithm in which the largest error was when only node 3 (the most

closely modeled node), was observed. The error in that case was 179%, and there was no chance

of it getting any lower. The error of the EKF when node 3 was observed was only 15.0%, and

with more samples it is possible that the error will decrease. The sensitivity of the GN algorithm

to initial model accuracy is a major shortcoming.

Another interesting thing was the lack of correlation between measurement and low error

rates. Indeed, there is only a single occurrence (node 3 measured) of an element by a measured

node having the lowest error. It seems for this simple system that for the EKF the point of

measurement is not a critical parameter, unlike the GN algorithm.

One last consideration: The input function of this experiment was a sine wave, the

convergence may be more rapid and complete with a white noise source (see Appendix 7.20 for

information on idinput .m). I did not have time to reran this experiment with a pseudorandom

source, but the difference in convergence time should be similar for both algorithms, so the

relative differences should be about the same.

10 DOF with noise

Here, the 10 DOF (5 translational and 5 rotational) model was tested with different levels

of noise and with a variety of measured and unmeasured nodes. The rotational nodes were not

considered measured, and the number of translational nodes measured was varied. The

unmeasured nodes were assigned a variance of 1 x 10~2, effectively rendering each

"measurement" completely ineffective in updating the state. With no added noise, the EKF can

identify the system quite well for just about any combination of measurements, including only 1

or 2 measurements. It is much more precise and robust than the Gauss-Newton iterative search.

Experimental setup

To continue the examination of the performance of the EKF for the 10 DOF system, white

noise with different S/N ratios was added to the simulated measurements and different input

functions and values for the measurement cova~iance matrix R were used. The white noise was

added at levels of -20 and -10 dB S/N. For example, for a SfN of -20 dB, white noise with a

maximum amplitude of 1/10 of the maximum of the corresponding clean measurement was

added to each measurement. The noise was therefore a different level for each node, as it

depended on the level of the measured acceleration of that node. A noise level of-20 dB is a

significant amount of noise for sensitive accelerometers and should be a good indication of noise

robustness. The measurement noise covariance was approximated by a constant for early

experiments; in later trials the actual covariance of the noise added to the measurements was

used.

There are several degrees of freedom here, namely:

III.

IV.

The type of excitation (white noise, sine wave)
The level of noise added to the signal (none, -20 dB, -10 dB)
The size and composition of the R (measurement covariance) matrix
a. Same for all nodes (0.01, 0.1)

b. Different for each node (measured for each one)
Which nodes are observed (all, some, one)

40

41

I therefore ran several trials, varying one parameter at a time to come up with the best

performance. My standard perturbation of the initial parameter estimate * [7/8 3/4 9/10 1/3 2/3 ’]

will be used. That is, the actual structure will have k values that are 7/8, 3/4, 9/10, 1/3, and 2/3

of the estimated k values. The experiments were performed in the following order:

1. White noise input, no noise added, R -- diag(0.01) (lower bound)

2. White noise input, no noise added, R = diag(0.1) (upper bound)

3. White noise input, no noise added, R = measured for each node

Of these experiments, trial 2 yielded the best results. Therefore I have fixed R at diag(0.l)

for the rest of the experiments. It is not as good for some no-noise situations, but it is essential to

only change one variable at a time. The other two experiments with white noise inputs were

4. White noise input, noise added at -20 dB, R = diag(0.1)
5. White noise input, noise added at-10 dB, R ~- diag(0.1)

This should give us a good idea of the ability of the algorithm to converge in the presence

of noise.

Incidentally, when using.a white noise input the performance of the algorithm would

fluctuate, sometimes significantly, so some of the above results are averages over several

experiments. These fluctuations are not present when a sine wave input is used. To fix this, a

pseudorandom input was generated using idinput.m (see Appendix 7.20). The results were much

more uniform when this input was used, but this experiment was not repeated using the

pseudorandom input due to a lack of time.

I now repeat the above using a sine wave input, with frequency 1 Hz.

6. Sine wave input, no noise added, R -- .diag(0.01) (lower bound)

7. Sine wave input, no noise added, R = diag(0.1) (upper bound)

8. Sine wave input, no noise added, R = measured for each node

9. Sine wave input, noise added at-20 dB, R = diag(0.1)

10.Sine Wave input, noise added at -10 dB, R = diag(0.1)

Again, using R = diag(0.1) led to the lowest error rates. The results for two separate

iterations are shown in Figures 4.2 and 4.3. The mean identification errors when the last 100

estimates are averaged are shown in blue, and the single last estimate is shown in red. This can

42

help us see where there is still some oscillation around the correct answer. It is clear from the

differences in Figures 4.2 and 4.3 that the accuracy of the identification can vary significantly if

the white noise (random) input is used. The sine wave input, on the other hand, yields identical

answers when there is no added white noise (as expected) and exhibits only a slight variation

when white noise is added to the measurements. As it returned the more repeatable results,, for

the observability test the sine wave input was used, as I had not yet been directed’ to ±d~.nput.

Conclusion for 10 DOF

The EKF works quite well on the 10 DOF system, with and without noise present. With -

20 dB of noise and a sinusoidal input, the mean identification error rate was only a few percent.

The next test should be combining a low number of measurements with added noise to see if

identification is still possible with only one or two sensors in the presence of noise.

50 DOF without noise, only floors measured

This model is the same as the 10.DOF with the columns discretized into 5 sub-columns.

The measurements are assumedto take .place only at the floors, so the number of measurements

stays the same at 5 but the number of DOF goes up by a factor of 5 to 50.

I have not yet been able to make any progress on the 50 DOF model of the five-story

¯ building. I have varied the.noise covariance matrices, the input amplitude, the size of the

perturbation, and the location and size of the perturbations, and I can get no convergence at all.

Worse, the algorithm is very slow - about 50 hours for 100 samples. This is due to the very

large size of P: 125 x 125. This means there are 7750 independent members of P that have to be

propagated, so ode45 has to be run 7750 times per time sample. This is quite Costly, and we

shall examine methods to reduce that cost at the end of this chapter.

However, even with the high cost we still have no positive results. The nodes that are

perturbed are not detected, even with changes of up to 50%, and nodes far away from the

damage are occasionally incorrectly identified with errors ranging up to 50%. With the same

amplitude input function as used for the 10 DOF, the changes in the output due to the

perturbations. (even for 20% changes in stiffness) were very small. It was necessary to multiply

the input by a factor of 1000 in order to make the errors large enough to affect the output,

something that should not be necessary as the 10 and 50 DOF systems are very similar models.

43

The estimation results for 5 of the 25 of the stiffness values (these are ones located next to the

floor nodes) for 100 samples are shown in Figures 4.5. It is clear that there is little convergence,

except possibly for states 110 and 115. The other three estimates are very poor and are headed in

the wrong direction. It is possible that a larger number of samples would yield better results, but

as it currently takes an hour to compute two samples, further computations have not yet been

attempted. It is also possible that we are suffering the same problems as before using a white

noise input, but I have seen the same results five times in a row, making the 15ossibility remote.

To be sure, I re-ran the experiment with a sine wave input and got the same results, so the

problem is not in the input.

I have an idea as to why identification of this system has been difficult. This is a model

that can be completely specified by 10 DOF, yet we are attempting to describe it using 50 DOF.

Thus we have the classic problem of over-specification, where many of the DOF are not

necessary to describe the system. This may be the reason we are having trouble identifying it. It

is also true that over-specification is the exact opposite of the situation we will commonly

encounter in practice, where our model will most likely under-specify the system. Thus it may

not be the best test of the algorithm. I would suggest a different model, one that requires 50 or

more DOF in order to completely describe the system. This may be the only way to effectively

test the algorithm. We will still be limited by the long computational times, but at least we will

be able to more effectively test the algorithm.

To test my hypothesis, I used the SVD of the generalized Hankel matrix to estimate the

order of the matrices for the 10, 50, and NTS 5 DOF systems (see Appendix 7.17). The results

confirmed that only 10-14 DOF are needed for the 50 DOF system. I have also run some

experiments in which the 10 DOF model was successfully used to identify the 50 DOF simulated

system (see Appendix 7.20), indicating that most of the DOF of the 50 DOF model are

superfluous and are preventing convergence.

10 DOF using all K~j values

It was suggested by Dave that I use, as parameters, all of the values of K instead of the

underlying independent stiffness values. Not every Kij is used as K is symmetric, so only the

diagonal and top triangle are used. This would give the program maximum flexibility in

determining the changes in K that were necessary to match the model. This was to help with the

NTS processing, but I wanted to try it on the 10 DOF system first to determine the effect of

having more parameters than DOF. This procedure lengthened the computational time

considerably as the number of parameters increased from 5 to 27, which increased the number of

states from 25 to 47. A perturbation of 50% was applied to all the parameter estimates (the real

K was ½ of the estimated K). Thus the initial error for all the nodes was 100% ((actual

estimate) / actual).

The results are shown in Table 4.2 at the end of this Chapter. Interestingly~ the algorithm

did converge to the correct eigenfrequencies (second part of Table 1) even though it only

parameters of the 27 converged. These parameters, though, were ones that were stiffness

parameters or sums of stiffness parameters. The parameters that didn’t converge are those in

which there was a rotational component added in. The uncertainty for the rotational components

is essentially infinite, so anything with one of those factors doesn’t converge.

4.2 NTS 5 DOF

This is a 5 DOF model that describes the large 5-story model instrumented at NTS. I

believe this model has the opposite problem as the one described in the 50 DOF section, as it is

far too low order to describe the system effectively. The SVD of the Hankel matrix (see

Appendix 7.17) confirmed that the system is. under-specified. I have tried many different values

for the noise matrices P, Q and R, and have not been able to get the system to converge, even for

up to 59 seconds of data at 400 samples/second. The stiffness values do not change much at all

or just continue to change very slowly, with no hint of convergence. At Dave McCallen’s

suggestion, I even tried changing the algorithm so that every independent value of K would

become a parameter, in order to ensure that the algorithm had the most flexibility possible. This

¯ worked on the 10 DOF discussed above, but not on this system.

I have proposed to Dave McCallen that we first try to identify a simpler known system,

such as coupled oscillators with three or more masses. This would allow us to test the algorithm

with real data, yet the system would be well understood and easily described with only a few

DOF. I would also like to be able to add a fourth, smaller mass to the system to explore to what

extent model inconsistencies may be accounted for in the designation of Q, the system

propagation noise matrix. The nature of the EKF is that some modeling inaccuracies may be

compensated for by enlarging Q, but how large the inaccuracies may be and the amount of Q

44

4.’

change required is not clear. It would be nice to be able to describe this quantitatively. This

experiment would also make a good paper.

Conclusions for the EKF

I have been able to show that the EKF works quite well with the 10 DOF simulated system;

even with -20 dB added noise in the measurements. However, this is a simulated system, and

the modeled and actual systems are the same order - indeed, they are identic~l except for the

stiffness values. It may be interesting to change the experiment slightly so that the model is only

8 DOF, and then see if we can still estimate the system well. It may also be useful to process the

measurement data to get an idea of what order model should be used to simulate the system.

There are several ways to do this, using singular value decomposition and others, and it may be

useful to look into that. However, for this year, we may want to limit ourselves to understanding

the limits under which the EKF and its like may operate successfully.

I also believe that the 50 DOFmodel should be revamped no represent a system that

requires close to 50 DOF to be described correctly. As for the NTS structure, I think we should

start a little smaller and instrument a real low.DOF system that we can describe using a simple

model. That way we can wring out the algorithms and the noise problems more systematically.

4.3 Speeding it up

Finally, a note about the speed of the program. Right now, for the 10 DOF system, the

program takes about 6000-8000 seconds to run for 500 .samples, which is about 12-16 seconds

¯ per sample. Not exactly real time, but do-able. The steps that are taking the longest are the

solving of the continuous differential equations for the P calculation between measurement

points.

The process begins by peeling off all of the diagona.! and upper triagonal values and putting

them into vector form using mat 9.vet s. ra. Then ode a.5 s. m is called to do the ODE calculations.

Mord
The vector is at most ~ k members long, where Mord is the model order, and can therefore

take a while to compute. I have experimented with different methods that would not require P to

bc calculated at each time step. This included the simplistic arrangement in which P is

calculated every I0th time after the first 20 samples, and another in which F is only calculated if

the change in the estimated stiffness parameters changes by more than a threshold percentage.

The results were not terribly convincing, as shown in Table 4.3.

Trial

1
2
3

4

Time (hours) Convergence time

(samples)
4.6 50
1.96 ~8O
1.70 ~50
1.75
1.79
2.2

~60

~60

N/A

P threshold (%) Mean error (%)

0 0.4
2

5
10

20
Every 10th

sample

7.1’

4.5

4.5

232

Table 4.3. Data concerning the use of an adaptive (2-5) and constant (6) method to restrict the number of times
calculated.

For thresholds of about 5-10%, the time is cut in half but accuracy suffers, on the order of

about 5%. Interestingly, the largest error for trials 2-5 was for element 5, all the other elements

were still identified to within around I% error. It may be useful to use a threshold of about 5-

10% if great accuracy is not needed.

However, following suggestions from the Big Four (Dave McCallen, Dave Harris, Jim

Candy, and Larry Ng) I made some additional attempts to speed up the program. These ar~

detailed in Appendix 7.20, the results of which are reproduced here.

I again concentrated on approximating the P calculation, as that is where the most

computational expense is located. These include using a linear and quadratic interpolation for

~, using a constant P after AP dropped below a threshold (above), and compiling parts of the

calculation. I tried four techniques this time. In the first I looked at the average change in

percent of P from one sample to the next. This was to examine P to see if it converged to a

steady state value and could therefore be expressed as a constant after some time.. I knew it did

not converge, but I wanted to know why so I plotted the changes in P vs. time.

The result is shown in Figure 4.5. It is clear that the members of P do not converge to

some steady-state value; there is still significant change after 75 samples, the convergence time.

Thus it will not be possible to use a constant P after thresholding to save computational cycles.

The second technique considered was to take the difference of each member of P just

before and just after the update calculation. If the difference was below a threshold, that member

47

of P was held constant and not propagated using ODE45.M, saving comp cycles. This differs

from the technique above, in which the entire P was held constant if the mean change was below

a threshold. Each member was tested eachtime, so that a member could be held constant one

round and then be propagated the next. This resulted in significant computational overhead, but

I wanted to see if there was a threshold we could use that would save enough time to justify the

extra computational expense.

The results from the second test are more involved and are tabulated in the first 11 rows of

Table 4.4. Some experiments were run more than once to get an idea of the variability of the

results. The criterion for convergence was a threshold in the change in stiffness states, detailed

above. It is clear that a/~i threshold of about 1% was the maximum that could be used without

raising the error rate to unacceptable levels. Unfortunately, this threshold did not result in a

reduction in computation time, even though almost 5% of the ODE calculations were skipped. It

is thought that the overhead associated with keeping track of the changes in P probably results in

little computational savings. Also, the reduced accuracy due to the approximation in P means

that the algorithm does not converge as quickly to the correct values, somewhat increasing the

calculation time. Therefore this option does not seem to be a wise one - approximating changes

in P results does not significantly reduce computational expense.

The third method was to limit the area of P that was calculated each time. Since the

stiffness states are the only ones of interest, it might be that the P calculation is only critical

where the stiffness states are concerned. Perhaps it would be possible to set the P calc constant

for the displacement and velocity parts and only calculate those parts of P related to the stiffness

states. The result is shown in row 12 of Table 4.4. It actually seems to work pretty well,

enabling a reduction in calls to ODE45.M by over 95% (reducing the runtime by over 50%) and

still getting pretty good stiffness estimates (8.2% error) by averaging the last two hundred points.

By plotting the estimates, it was clear that they oscillated about the actual stiffness values,

indicating weak convergence. This warranted further exploration. A compromise was tried in

which all of P is calculated every 5th or 10th step and the stiffness state propagation is calculated

the rest of the time (every sample). The results are shown in Table 4.4 in rows 13 and 14.

worked surprisingly well, achieving a mean identification error of only 1.16% (1.39% with the

last two hundred estimates averaged) for every th calculation to 3.35% (1.97%) for every 10th.

4~

At the same time, it took only slightly longer than the threshold of 1% and about ½ the time of

the 5% AP~ threshold.

The fourth method is quite simple - just calculate ~ every 5th or 10th time and consider it

constant the rest of the time, skipping the stiffness updates. This did not work before (see

above), but for some reason worked this time. I think I fixed a bug in-between the test above and

the new tests, but for whatever reason it now works quite well, with 80% of the ODE45.M

calculations skipped and identification error rates of only 0.39% calculating every 5th ~ and

90% skipped with an error rate of 1.97% for every 10th. This accuracy held up for a variety of.

inputs. It seems the stiffness states need not be calculated each time to maintain a decent level of

accuracy. As the run times were essentially the same, calculating ~ every 5th sample seems to

be a good choice. I think this is the best way to achieve reasonable identification accuracy while

saving some computational expense. Of course, if everything went perfectly it would still be

faster to calculate P every time, as the convergence is faster. But for situations where

convergence is not rapid or assured, only calculating P every 5th step may make sense.

Larry has some further ideas about approximating P and K, and hopefully these will speed

up the processing even more. If not, though, thisis the perfect problem to use parallel processing

as the ODE calculation is p~rformed on each of the members of ~, none of which depend on the

others for calculationS. Therefore the prograin could run normally until the ODE calculation is

required which could then be run in parallel, greatly speeding the calculation process.

4~

i0 DOF, all measured
Nsamps = I000;

perturb = 0.5;

all_k = i;
EKF_test_parsdiff_10DOF_all_k.m

I0 DOF all_k.txt

(i,j) pars FE model true

I,i

2,2
1,3
2,3

3,3
1 4
2 4
4 4

3 5
4 5

5 5
3 6
4 6

6,6
5,7
6,7
7,7

5,8
6,8
8,8
7,9
8,9

9,9
7,10
8,10
9,10

10, i0

struct

le6.*

1 3.2443 1.6222

2 9.7697e+007 4.8849e+007

3 -1.6222 -0.81108

4 116.8 58.398

5 3.2443 1.6222

6 -116.8 -58.398

7 5606.2 2803.1

8 9.7697e+007 4.8849e+007

9 -1.6222 -0.81108

i0 116.8 58.398

ii 3.2443 1.6222

12 -116.8 -58.398

13 5606.2 2803.1

14 9.7697e+007 4.8849e+007

15 -1.6222 -0.81108

16 116.8 58.398

17 3.2443 1.6222

18 -116.8 -58.398

19 5606.2 2803.1

20 9.7697e+007 4.8849e+007

21 -1.6222 -0.81108

22 116.8 58.398

~3 1.6222 0.8110¯8

~4 -116.8 -58.398

25 5606.2 2803.1

26 116.8 58.398

27 9.7686e+007 4.8843e+007

est.

1.6216
9.7697e+007

-0.80802

116.8
1.6059

-116.8
5606.2

9.7697e+007

-0.81142
116.8

1.6387
-116.8

5606.2
9.7697e+007

-0.81913

116.8
1.8753
-116.8
5606.2

9.7697e÷007
-1.0098

116.8
0.96963

-116.8

5606.2
116.8

9.7686e+007

model

Average E error = 69.0044 %.

FE e-freq Est. e-freq Actual e-freq %diff

0.84953 0.60238 0.60071 0.27843

2.4682 1.7554 1.7453 0.58252

3.8554 2.8027 2.7262 2.8065

4.8907 3.5806 3.4583 3.538

5.5081 4.021 3.8948 3.2388

time = 107 minutes

%diff

0.035276

~ -i00
0.37755

-100

]..0006
-i00

-i00
-100

-0.04138
-i00

-1.0184
-i00
-100
-100

-0.99199
-100

-15.606
-i00
-i00
-100

-24.501
-I00

-19.548
-100
-i00
-100
-100

Table 4.2. The results from the 10 DOF experiment where all possible Kq values are used
as the parameters. Only the highlighted parameters converged.

5O

Exp Threshold (%) Run time*
or parts (min)

calculated
None 5.88

None 6.59

10"~6 7.99
0.001 7.93

Samples to
converge

127

127
127

127

ODE calc
skipped

(%)
0

0
0.002

0.17

Mean ID

error (%)

0.62
0.62

0.63

0.66

Max ID

error (%)

1.68
1.68
1.68
1.79

0.01 7.88 127 0.39 0.65 1.78
0.1 8.15 127 1.03 0.38 0.79
0.1 7.67 127 1.03 0.62 1.61

134
134

1.0 8.24
1.0 6.95

10 2.5 19.48
11 5.0 18.54
12 Only stiffness 8.99

4.65

13 Every 5th with 10.0
stiffness

4.84

8.18
15.2
95.4

75.4

84.214 Every 10 th with 9.96

stiffness

9.6215 Every 5th W/O

stiffness
16

N/A
N/A
N/A

0.30
0.35

30.8
(8.20)1

0.65
0.77

77.6

1.16 -2.84
(1~39)I

-150

-150

Every 10th W/O 9.77 - 150 90.0
stiffness

3.35

(1.97)~

1.97
(1.65)1

-7.88

-3.98

Table 4.4. Convergence times and identification errors for the same input/output sequences and different
AP thresholds and conditions. Every nth with stiffness means that the Pdot values associated with the
stiffness states were calculated at each time sample and the entire Pdot calculation was done every n
samples. Every nth without stiffnessmeans that only the entire P calculation was done every n samples.

* run time can vary depending on the amount of memory available, accurate to about +- 1 minute
average error using stiffness values defined by the mean of the last two hundred estimates

52

10 DOF with -20 dB noise without (red) and with (blue) averaging of last 100 points
r T r r ~ T

White noise input Sine input

0

>.50% > 300%. > 30%

k
5 6

experiment #

> 300% "

7 8 9 10

Figures 4.2. Average identification error for the EKF with a -20 dB noise level. This is the first repetition
of the 10 experiments above. The left (red) bar represents the mean identification error with no averaging,
while the right (blue) bar is the error with the last 100 samples averaged. It is clear that the sine wave
input results in a more accurate identification.

53

10 DOF experiments without (red) and with (blue) averaging of last 100 points

16 White noise input

0
1 2 3 4 5 6 7 8 9 10 11

experiment #

Figures 4.3. Average identification error for the EKF with a -20 dB noise level. This is the second repetition of
the 10 experiments above. The left (red) bar represents the mean identification error with no averaging, while the
right (blue) bar is the error with the last 100 samples averaged. It is clear that the sine wave input results in
more consistent performance.

54

x 106 Actual stiffnesses (blue) vs. identified (red)

3.5

/
"

actual..,,~
t d [

0x 10s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4, I t I l I t t .~

0x 106 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

\

0x 106 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I I I I I l I I

4 F L

~106 0.1 0.2 0.3. 0.4 0.5 0.6 0.7 0.8 0.9
6~ I I I I I [1 I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (sec)

Figures 4.4. The actual values for fiveof the 25 stiffness value to be identified (blue), and the
estimated values (red). These five values are next to observed nudes and should be easily identified.
There were 100 samples analyzed. Note that the y axis is not the same scale for every plot.

55

x 106delta P in percent for fully measured 10 DOF, no noise, std pert, cony in 75 samps
3.5

0

iO0

;ZOO 4OO 5OO 600 7OO
Samples at 1OO Hz

Converged by here

9OO 1OO0
15-Mar-2000

Figures 4.5. The change in error covariance P in percent for 1000 samples at 100
samples/second. Note the scale here is multiplied by 106, the maximum value being 3.5 x 106%.

Chapter 5. Conclusions

So what have I learned?

The GN algorithm is not a good one for real systems in which the data is acceleration, the

numbers of DOF are high, the number of measurements is low, and the model is inadequate. It is

simply not robust enough to function well in the environment that we desire.

The EKF shows a lot more promise, as the amount of noise in the system, measurements,

and model may be quantified. It is also readily scalable to large DOF, although more work will.

have to be done to speed it up for high (> 50 DOF) systems. It also does not require full

measurement and works easily with acceleration.

Why the 50 DOF model doesn’t work

As explained in Chapter 2, the 50 DOF model is just the 10 DOF with the columns divided

into 5 sections. I began to suspect the model was flawed (as far as parameter identification goes)

when I could not identify the 50 DOF simulated system with either algorithm even with no noise

present and all 25 translational nodes measured. Since I know everything about the system, I

shouldhave been able to identify it correctly and was not.

I began by examining the expected model order using the singular value decomposition

(SVD) of the generalized Hankel matrix (see Appendix 7.17). This method uses the measured

output sequences to estimate the model order, and it came up with about 10-14 DOF needed, far

short o~" the 50 DOF used. That means that most of the DOF are not needed and the system is

very over-specified. This type of system can cause algorithmic instabilities and can prevent the

algorithms from cgnverging.

In addition, as one of the suggestion from the Big Four (Dave McCallen, Dave Harris̄ , Jim

Candy, and Larry Ng, see.Appendix 7.20), I took the five simulated outputs from the 50 DOF

model and used the 10 DOF model to identify the parameters I had changed. It identified them

all quite well, indicating that in this case 10 DOF w.as enough to identify the system. Therefore

the 50 DOF model is over-adequate and should not be used for identification. Another 50 DOF

model is needed, one that actually requires -50 DOF to describe the system fully. Perhaps a 25

story building? Whatever it is, it is important that it pass the Hankel matrix test and that any

perturbation should be identifiable when the translational nodes are fully measured.

57

Why the NTS 5 DOF model doesn’t work

The NTS model has the opposite problem - it is just too simple for the structure it is

attempting to model. In Appendix 7.17, I show that the SVD decomposition of the Hankel

matrix indicated that many more than 5 DOF were required to describe the structure given the

recorded outputs. In my final memo (Appendix 7.20), I discuss various suggestions given by the

Big Four as to how to make it work, all of which failed. This model is just too simple. There is

no easy answer here as to what needs to be done next, but I believe a simplel~ physical model

should be instrumented and recorded so that the problems inherent in identifying physical

models may be addressed by a system that is capable of being modeled by 5 or fewer DOF. We

need to walk before we run.

Chapter 6. Suggestions for future work

Try measuring a simpler physical model with only 3-5 real DOF, like a set of connected

springs. This will allow identification of a real system with noisy accelerometer

measurements that is much less complex than the NTS structure. I would recommend

adding a fourth, smaller mass to the system to explore to what extent model

inconsistencies may be accounted for in the designation of Q, the system propagation

noise matrix. The nature of the EKF is that some modeling inaccuracies may be

compensated for by enlarging Q, but how large the inaccuracies may be and the amount

of Q change required is not clear. It would be nice to be able to describe this

quantitatively. The NTS structure is too complex to use as the first real structure to be

identified.

Use optimal smoothing (Gelb, Applied Optimal Estimation) to determine the initial

conditions of the real state instead of the linear interpolation model now used. This

should be more accurate, and it has been reported that the convergence of the algorithm

can be heavily dependent on the initial conditions. Or, take data from the modeled

system beginning from rest. Of course, this will not be available in the field, so it is

perhaps better to do the smoothing.

o Do not attempt to identify anything using the present 50 DOF model. I have shown that

it can be identified with only 10 DOF, and I believe this causes the identification

programs to fail. A 50 DOF m6del is needed that requires 50 DOF to specify the model.

o It may be interesting to change the 10 DOF model slightly so that it is only 8 DOF, and

then see if we can still estimate the system using the 10 DOF model to estimate the 8

DOF system. This would also give us a feel for the amount of system nonlinearities tha

can be accounted for with Q.

o It may also be useful to process the measurement data from a real model to get an idea of

what order model should be used to simulate the system. There are several ways to do

this, using singular value decomposition and others, and it may be useful to look into.

59

6. One last thing - when setting the noise parameters in EKF_getnoise. m, be sure not to use

the (parameter)2 rule if the parameter is less than 1. Did that once and it wasn’t pretty.

6.1 How to get started with the EKF algorithms

The easiest way is just to open up one of my batch test programs like

EKF_t es t_parsdi f f_l 0DOF. m in e : \mfiles \ struc tures \Toolbox\ Extended Kalman

Filter and run it. It. makes a whole bunch of different perturbations and then simulates the

outputs and runs the identifier. You set the measurement noise levels here (for zero noise use

240 dB to make the algos more stable), as well as the input types (white or sine) and type of

R matrix (used in EKF_getnoise). You can also animate the outputs if you want. The.results

are returned to you in a tabular format and also graphical if you want. It’s a good way to get

going, as you can see all the different parts of the program.

The other type of batch program is EKF_test_obsdi f f_10DOF.m. Instead of testing

different perturbations, it tests the identification process when different nodes are observed.

Good luck! Call me if you need anything!

Greg

Appendix 7.1. Timeline of development

Dates Work area

2/5/99

2/6 - 2/10

2/11 - 2/23

2/24

2/25 - 2/26

2/27 - 3/1

3/2

3/3 - 3/4

3/5 - 3/8

3/9 - 3/11

3/12

3/15

3/16 - 3/30

4/1

4/2 - 4/14

4/19 - 6/1

Definition of problem, meeting with Greg, Dave, Matt

Review of work done to that point (GC, AM files)

Consolidate damage detection algorithms of GC (use the same variables througl~out,

comment the files, etc.), write files to read in FEM supplied by Matt

NTS experiment

Made all GC script files into function files to save memory, condense files

Examined continuous to discrete state space transformation, wrote C2DGB.M and

C2DCH.M (Cayley-Hamilton theorem, only good for low order systems)

Discovered RAND.M does not always make white sequences, tested flaw_detection.m for

perturbations in K, M, C

First attempted use of PEM.M (Gauss-Newton iterative gradient search, GN) for

identification of simulated 5 DOF system, M and C constrained to be constants

Examination of Jordan form for F, G, H - rejected as it made G and H full

Playing with parameters of PEM.M, limited identification success for 5 DOF ~im system

Construction of FIVEDOF_TH.M, which allows me to specify only the independent ki of

K, improving identification accuracy tremendously. Using the changes in ki only at this

point. Identification errors on the order of 1% in only a few iterations.

Tested changes in K, M, and both K and M for 5 DOF sim, good performance. Wrote

flow chart of damage detection and ID algo (structures flowchart.sdr).

Early work on NTS structure. Constructed a noncausal integrator, attempted to use it to

calculate position from accelerator data. Abandoned when noise increases by s2.

First examination of the effects of not having all nodes measured for GN algorithm.

Construction of TH400DOF.M and associated files, the 400 DOF simulated structure.

Detected differences in my model and the ME model, found they are due to roundoff

errors in ME model. Started to run PEM for the 4000 DOF system.

Thorough examination of the GN algorithm, observability, streamlining of PEM.M and

associated files into PEM_SPARSE.M. Found out any file that uses sparse matrices

61

6/3 - 7/6

7/12 - 7/13

7/14 - 7/19

7/21 - 7/23

7/24 - 8/4

8/5 - 8/10

8/11 - 8/16

8/17

cannot be compiled, left as sparse. Also determined C2DGB.M was slow and causing

errors. Sped up by flushing outer diagonals. Wrote progress report.

Troubleshooting and improving performance of entire GN algo - flaw detection and

identification. More Jordan form exploration, Jordan_form.m written.

Received 10 and 50 DOF sim models, built files needed to use them in identification.

Came up with and coded the "collapsing" method of handling less than total measurement

of all nodes. GN method not built to handle anything less thah total measurement of all

DOF.

Tests and troubleshooting with 50 and 400 DOF models. Not getting convergence, plus

gradient step is much too large. Led to the introduction of limits for both g and pars

inside PEM_SPARSE.M.

Examination of the effects of "collapsing" the various identification parameters so that the

GN algo will work with reduced measurements. Test of ID algo on sim 50 DOF system.

Replaced the determinant criterion (Ljung) with a trace criterion, which is more accurate

and stable.

Troubleshooting of ID algo for 5 and 50 DOF. Found that we should be using the

calculated value of l~e, not just the default value of eye(#DOF). Accuracy increased.

Also found that my version of K (the stiffness matrix) and the ME’s version do not match.

ME version determined to have roundoff errors, other than that they are the same. Also,

since the GN algo is essentially a Wiener filter (the Kalman gain does not change in time,

and uniqueness is guaranteed if the system is completely controllable), more research may

be needed to determine the best value for the Kalman gain.

Systematic study of theeffects of observability on the convergence of the 10 DOF GN ID

algo. Locations and number of sensors varied. Results indicate that sensors can do the

most good when located at the places where model is poorest. Can actually decrease

accuracy if located where model is strong. Repeatability of results also examined, found

to be relatively consistent.

Construction of the files needed to identify the NTS 5 DOF model. Ran some preliminary

tests, found that fourth floor channel (y12) was missing frequencies above about 40 Hz.

Discovered two problems with ID algo: First, c2dgb heavily dependent on sampling rate.

Higher sampling rate, much better conversion. Second, for higher sampling rates, have to

62

8/17 - 8/24

8/25

8/26 - 9/6

9/7.

9/13 - 9/14

9/23

9/27

10/4

make sure that simulated input has correct frequency components. On some tests where fs

= 100 Hz, white noise with components from 0-100 Hz was used, resulting in aliasing and

inaccurate results. Fixed both of these problems.

Massive rewrite of entire ID algo so that acceleration could be used as the input to the

system. This was quite difficult for the GN algo..Had to redo everything. Also

discovered that the white noise input used at NTS did not have enough frequencies below

about 6 Hz and extended above 50 Hz to about 52 Hz.

Status report. NTS 5 DOF model will converge given simulated input/output, but only for

small perturbations (~5%). Low order sim models (5, 10 DOF) will converge under

wide variety of perturbations and configurations. Higher order sim models (50, 400 DOF)

will not converge well at all, 50 DOF will converge somewhat when stiffness values near

measured nodes are perturbed.

Examination of the effects of K (Kalman gain) on the stability of the LT1TR.M kernel

PEM_SPARSE.M. Tried several different values for K, very few lead to convergence.

Also began an in-depth look at the calculation of the initial conditions for the NTS

structure. With Larry, came up with a linear interpolation algo that seems to work pretty

well for sufficie.ntly high sample rates.

NTS status: Initial conditions works ok, Kalman gain still unsure of, and have to estimate

P from nqodeled states as we don’t.have access to actual states (displacement and

velocity).

Tutorial "The State of the Art in Vibration-based Structural Damage Identification" in San

Jose. Wrote a report on what I learned.

Discovered that NTS 5 DOF model, as given to me, is completely insensitive to changes

in stiffness values. Under advice from Dave, tried varying E instead of E*I, no good.

Finally (10/19) Dave got back word that I should use the shear values ~ as the variables,

which worked.

Took a look at Principal Component Analysis (PCA) for use in determining which nodes

were the most critical. Results inconsistent, seems to depend on many factors.

Tested sensitivity of whiteness tests on 10 DOF model, could detect damage to pars(3) for

changes of 10% or greater.

63

10/5 - 10/9

10/11

10/15

10/19- 10/20

10/23 - 11/7

11/8 - 11/26

11/30-12/22

1/3 - 1/5/00

1/6- 1/12

1/13 - 1/23

Tried chariging the GN algo so that the direction constant ~, (as used in 0 = 00 + 2VgT)

would be a vector instead of a scalar (PEM_SPARSE.VECTORK.M). It was hoped that

this would make the GN algo more sensitive to changes in a single stiffness value in a

multiple DOF system. Results ambiguous - algorithm now takes about twice the time to

run, only slightly more accurate. Decided in wasn’t worth the effort.

Gave report on the project to the LDRD review board.
.I

Reviewed the data from the NTS experiment. Compared the psds of the output files in the

y direction (y3, y6, y9, y12, y15) for all of the white noise, undamaged tests

(strucow#.mat). Results all consistent - same resonance locations, all have frequencies

above about 35 Hz missing from y12.

Changed NTS ID algorithm to operate on ~y instead of EI. Identification results mixed -

Sort of converged to the desired efreq of 4.5, 14.7, and 31.9 Hz. Parameters changed by a

reasonable amount- from 1% to 14%.

Vacation, JASA conference in Ohio

I have decided to change the ID algorithm from the GN approach to an optimal filter

approach. This should have better noise robustness, convergence, and not all nodes will

have to be measured. We will also be able to use acceleration directly as a measurement

as well as operate the state propagation in the continuous domain, obviating the need for

the cont - discrete transformation that has caused so many problems. Spent this time

familiarizing myself.with all types of Kalman filters and estimators.

Construction and troubleshooting of 1-D continuous/discrete Extended Kalman Filter

(EKF) algorithm (EKFSHO.M). Works very well, converges in about 20-30 samples.

Examination of the effects of the various noise parameters on the convergence of the EKF.

Wrote report.

Extension of the 1-D EKF to multiple DOF. This involves the .calculation of both F and H

symbolically. This can take quite a long time, but for each model only has to be done

once and then can be recalled and the present state values inserted. Took some doing,

using strings and symbolics together to speed up the process.

Condensing and speeding up EKF_ID.M. Went from 4.7 hours/1000 samples to 3.2

hours. Tried to speed up by not calculating P if AP was below a threshold for 10-20

1/24

1/25

1/26

1/31 - 2/3

2/4

2/7

2/7-2/24.

2/25-2/29

samples, didn’t work as DP can be quite small for a few samples then jump back up to

substantial values.

Compared the performance of the EKF to the GN for a variety of sensor locations and

number of sensors. Wrote report.

Tried simple approximation for Pdot calculation in EKF, hoping to speed things up.

Didn’t work. Also began processing NTS data with EKF, no success. No convergence or

the C~y values driven to lowest value allowed.

Checking the NTS noise parameters for correct size, tried a few different ones. Still no

convergence.

Many different methods tried to speed up Pdotcalculation. Profiled several different

methods, compiled different files, final results pretty good. Ended up compiling

VEC2MATS.M and MAT2VECS.M, then gutting ODE45.M and getting rid of everything

that wasn’t needed(ODE45_GB.M). Processing time for 10 DOF dropped from 3.2 hours

for 1000 samples to 42 minutes. Now it is actually usable.

Coded the files necessary for the 50 DOF model to be identified by EKF. Coded the files

needed so that all of the attributes (~y, E, and L) of the NTS model could be used

parameters.

Fundamentally changed the EKF algo so that all the members of the stiffness matrix K

(not just the independent values, but not including every member as K is symmetric) could

be used as identification parameters. Saved files with suffix all k.

Ran several different configurations (with and without noise) for 10 DOF, 50 DOF, and.

NTS 5 DOF using both the normal and the _all_k files. The all k 10 DOF parameters

that represented combinations of independent parameters converged, but the others did

not. The NTS 5 DOF _all_k model did not converge at all, even after analyzing 50

seconds of data. The 10 DOF model did rather well in the presence of-10 and -20 dB

noise, especially with full measurements. 50 DOF did not converge ~ven without noise.

Tried increasing the beginning value of P~ hitting it harder so that the displacements would

be larger (helped a little), among others. Wrote "EKF results for 10, 50, and NTS

DOF’.

Examined the SVD decomposition of the generalized Hankel matrix as used for

determining correct model order. Found that the 10 DOF system required only 6-8 DOF

65

3/I/00

3/2 - 3/14

3/15

3/16-3/17

3/20-3/21

3/22-3/24

to be described adequately. Similarly, the 50 DOF system needed only 13 DOF (and

perhaps as few as 10 DOF) to be described. It is therefore vastly over-specified.

Conversely, the NTS 5 DOF system was shown to be vastly underspecified, needing more

than 25 DOF to adequately describe the motion. Wrote "Estimating model order using the

SVD decomposition of the generalized Hankel matrix".

Had advisory meeting with Dave McCallen, Dave Harris, and Jim Candy to discuss

problems above. They offered several suggestions, outlined in~ memo "Suggestions and

comments from advisory meeting of 3/1/00".

Implementing several suggestions including the ones concerning the Pdot calculation.

These included skipping a calculation (one member of P) if AP~i dropped below

threshold. It wasn’t kept constant, though, it was re-examined after the next update. This

worked relatively well, although the threshold had to stay at 1% or less to ensure

convergence. Even then, convergence took longer than with the normal Pdot calculation.

Also wrote file that allowed examination of AP, AX, AK, and AY as a function of time.

Discovered that only AX (stiffness states only) and AY go to zero as a function of time,

and the others do not. Use the DX metric to stop calculations - if DX is less than 0.2% 20

times in a row, the program terminates.

Successfully identified the 50 DOF simulated output using the 10 DOF model. Shows that

50 DOF model is overspecified, needs to be redone.

Wrote up results from above experiments

Began the process of using a series of notch filters to remove information from the

recorded NTS data so that the NTS 5 DOF model may be able to identify it properly..

Built first attempt at a filter, examined the psds of the recorded data as well as the

innovations of the ID process when no filter was used.

One more attempt to speed up P calculation process. I thought it might be possible to only

calculate the Pdot for the stiffness values, as that is what we are interested in identifying.

They only make up a small fraction of the total size of P, so that would speed up the Pdot

calculation considerably. This didn’t work that well (mean errors on the order of 30%),

I threw in. calculating all of Pdot every 5th or 10tla sample. This would still speed things up,

without sacrificing too much accuracy. This worked much better, with mean accuracies

down to 1.1% and 3.4%, respectively. Surprisingly, it works oven better if the stiffness

3/27 - 4/i I

4/12 - 5/I

values are not calculated in between calculating all of Pdot. Calculating Pdot by itself

every 10 samples resulted in a mean error of only 1-2%, with a reduction of 90% in Pdot

calculations. This was the strategy adopted for systems with 10 or more DOF.

Back to the NTS data. After Chad has run my recorded input through his simulator and

we confirmed that the psds were the same, I tried to identify it using the simple filter of

3/20 (EKF_BP.M). The results were still quite poor. I then built a series of Chebychev II

notch filters (EKF_notch.m), in order to more thoroughly remove tt/e frequency

components of disinterest. This too, failed to produce reasonable values for the oq, values,

although at times the resonance locations seemed to be close to those desired. This was

probably just a coincidence.

Writing the final report, consolidating records, preparing computer files for transfer to

next PI.

Appendix 7.2 File Locations

67

The files of interest are all on the NT machine, the Dell P2-350. It is not that fast but has

plenty of RAM and disk space for backups. The main Matlab files are all in e: \M~:iles, with

several sub-folders. The main one for this project is \structures, which contains several more

folders. The main ones there are \GB 17iles, which contains a lot of my miscellaneous files,

\Toolbox, which contains most of the GN identification algorthims, \Toolbox\Extended

Kalman which contains the EKF files, \Mode]..~ which contains all the model information, and

\AM Mf±les which has some files useful for ME to EE translation. Also of interest is \Gr~

175.les \ EK17_results, which has a lot of the results discussed in this paper in .txt and .doc form.

The documents of interest can be found in e: \Documents, with this paper in \17inal

structures\report and the various memos in \Progress Reports\Structures. There are

some of my Powerpoint presentations in \Ppt Presentations, and some presentation graphics

can be found in e: \Presentation Graphics.

These files are all backed up daily onto the F : drive using FileBack PC, a shareware

program.

The NTS structure-data files are located in G: \Data\Structures, but you shouldn’t need

to access them as’-the corresponding .ma’t files are on the NT machine in

e : \mfiles \strictures\mat files.

68

Appendix 7.3 References

Lennart Ljung (1987). "System Identification theory for the user". Prentice-Hall,
Englewodd Cliffs, NJ. ISBN 0-13-881640-9

J.E. Dennis and R.B. Schnabel (1983), chapter 10. "Numerical Methods for Unconstrained
Optimization and Nonlinear Equations", Prentice-Hall, Englewood Cliffs, NJ. ISBN 0-13-
627216-9 ~

Gelb, A. (ed. 1999). "Applied Optimal Estimation", The M.I.T. Press, Cambridge, MA.
ISBN 0-262-57048-3.

4. Franklin, G.F., Powell, J.D., Workman, M.L. (1990). "Digital control of dynamic systems".

Addison-Wesley Publishing Company, Reading, MA. ISBN 0-201-11938-2

5. Kallstrom, C. (1973). "Computing EXP(A) and the integral of EXP(As) ds". Report

Lund Institute of Technology, Division of Automatic Control, March 1973. Not yet located.

69

Appendix 7.4. Filenames and descriptions

Name Function

!t.m

animate5.m

c2dgb.m

c2dgb400.m

c2dgb5.m

collapse.m

compare_NTS_psds.m

Discrete_Model_Builder.m

EKF_IOMCK.m

EKF_IOMCK_alI_k.m

EKF_IMCK.m

EKF_50MCK.m

EKF_5MCK.m

EKF_5MCK_alI_k.m

EKF_Algo.m

EKF_BP.m

EKF_calcFH.m

EKF_calcPJ.m

EKF_getnoise.m

EKF_ID.m

EKF_NTS.m

EKF_NTS_Music.m

EKF_Pprop.m

Template file for new files

Animates 5 outputs for a five story building

GB file to transform the continuous matrices F and GJto discrete form (GN)

GB file to transform the continuous matrices F and G to discrete form for 400

DOF (GN)

GB file to transform the continuous matrices F and G to discrete form for 5

DOF (GN)

Collapses a matrix by removing rows specified in obsmat (GN)

Compares the psds of the output of the NTS structure

Function for building the continuous and .discrete models for the structures

project. (GN)

Tospecify ~ 10 DOF state-space model for identification purposes.

The free variables (pars) are the E values for each element.

SAA except free variables now the

SAA for 1 DOF (SHO)

SAA for 50 DOF

SAA for 5 DOF (NTS).

SAA for 5 DOF (NTS) and free variables now the Kij.

Main EKF algorithm.

Returns filter coefficients for simple bandpass filter (use EKF_notch instead)

Calculates the F and H matrices for the extended Kalman filter for a system of

any DOF

Calculates the Jacobian for N DOF systems and determines if it is constant,

then saves output info (J F indF cflag) in EKF_J(Mordi (not used anymore!)

Returns the noise matrices (Pminus, Q, Rk) for the different models for the

EKF

Main calling program for the simulated system EKF identification

Main calling program for the real NTS system EKF identification

Recalls NTS data and plots MUSIC information as well as psds of the

recorded input and output and simulated output

Supplies the information necessary to propagate P in EKF_Algo

EKF_Pprop. compile, m

EKF_Pprop_par t. m

Compilable version of the above. Did not increase spe~, not used.

Same as above but only propagates the stiffness part of the equation. Did not

help, not used

EKF_sim. m EKF simulation engine. Used to simulate outputs of a model with real or

simulated input.

EKF_tes t_obsdi f f_l 0DOF. m Tests the l0 DOF model with the number and location of measurements

varied, runs on NT machine

EKF_test_obsdi f f_IODOF_2 .m SAA, but used on 98 machine ~

EKF_tes t__parsdi f f_l 0DOF. m Tests the l0 DOF model with the number and location of stiffness

perturbations varied, no change in measured nodes, runs on NT machine

EKF_tes t_parsdi f f_l 0 DOF_al l_k. m SAA, uses Kij as parameters

EKF_test_parsdi f f_10DOF_noise, m Tests the I0 DOF model by changing the amount of

measurement noise, pars and measurement locations constant, 98 machine .

EKF_tes t_parsdi f f_5 0DOF. m Tests the l 0 DOF model with the number and location of stiffness

perturbations varied, no change in measured nodes, runs on NT machine

EKF_test_parsdiff_50DOF_2

EKF_Xprop.m

EKF_Xprop_compile.m

EKFSHO.m

errint.m

ev400.m

fileview for NTS.m

findflaw.m

fiveDOF.m

fiveDOF_sparse.m

fivedof_th.m

flaw_detection.m

flush.m

gbf.m

gbf.m

getaux.m

¯ m SAA, runs on 98 machine

Supplies the information necessary to propagate P in EKF_Algo

Compilable version of the above. Did not increase speed, not usdd

EKF using a simple harmonic oscillator (1 DOF). Good to get a feel for the

EKF algorithm.

Calculates the error vs. frequency for a digital integrator (GN)

Calculates the eigenvalues for the 400 DOF system (GN)

Views the scaled NTS data

Damage identification algorithm for GN, called after flaw_detection.m

Builds state-space model for the 5 DOF (not NTS) model (early)

SAA using sparse matrices

Builds theta model for the 5 DOF (not NTS) model (calls five_dof.m)

This is a supervisory code to (1) Simulate the structure dynamics and

(2) Run a Kalman Filter to estimate states, and (3) detect flaws by performing

a whiteness test on the innovations

Removes matrix elements below a threshold. Used to remove rounding errors

(by W. Tych).

Changes to the L:\ Mfiles~Structures\GB Files directory from the 98 machine

Changes to the E:\ Mfiles~Structures\GB Files directory from the NT machine

Gets the auxiliary variables for 400 DOF

71

getNTSRv.m

getparsl.m

getparsl0.m

getparsl0_all_k.m

getpars400.m

getpars5.m

getpars50.m

getparsNTS5.m

getparsNTS5_all_k.m

Hankel_test.m

Hankel_test_NTS.m

issymm.m

Jordan_form.m

kb.m

kbeam.m

kcolumn.m

kcolumnl0.m

kcolumn50.m

kcolumnNTS5.m

Kf.m

kf_caller.m

ititr_comp.m

ititr_sparse.m

mat2str.m

mat2vecc.m

Calculates Rv (measurement noise covariance matrix) using recorded NTS

data background files

Gets the default estimate parameters for the SHO 1 DOF system

Gets the default estimate parameters for the 10 DOF system

Gets the default estimate parameters for the 10 DOF system when the Kij are

used as the parameters

Gets the default estimate parameters for the 400 DOF system

Gets the default estimate parameters for the 5 DOF (r~ot NTS) system

Gets the default estimate parameters for the 50 DOF system

Gets the default estimate parameters for the NTS 5 DOF system ̄

Gets the default estimate parameters for the NTS 5 DOF system when the

are used as the parameters

For the simulated models (10 and 50 DOF), this computes the observability

matrix O and controllability matrix W used to calculate the general Hankel

matrix H. This SVD of this is calculated and the values checked against a

threshold to determine the minimum order of the system.

SAA for the NTS model

Determines if the input matrix is symmetric

This routine reads in the matrices from a discrete-time LTI system

state space model Fd, Gd, Hd and performs a similarity transformation on

them to create a "normal form" system. (GN, makes F diagonal but G and

full, not used)

The short version of keyboard, saves time

Returns the local k matrix for a standard beam element

Returns the local k matrix for a standard column element

Returns the local k matrix for a column element for the 10 DOF model

Returns the local k matrix for a column element for the 50 DOF model

Returns the local k matrix for a column element for the NTS 5 DOF model

This is the Kalman Filter routine used to perform the whiteness test in

flaw_detection (GN, G. Clark)

This calls the above (GN, G. Clark)

Compiled version of Matlab’s Ititr.m, a linear time-invariant time response

kernel. (GN, not used)

Version of Matlab’s Ititr.m that can handle spare matrices. (GN)

Extension of num2str.m (W. Tych)

Vectorizes matrices by columns

72

mat2vecs.m

matdiff.m

mf2th_sparse.m

model_est.m

NTS2ascii.m

NTSff.m

NTS_init_cond.m

NTS_plot_out.m

NTS_sens.m

nuderstgb.m

Observability_test.m

ode45_gb.m

onedtest.m

Pchange.m

pem_sparse.m

pem_sparse_constahtk.m

pem_sparse_symbolic.m

pe_sparse.m

r2s.m

readelem.m

readnodes.m

read_accel.m

Vectorizes symmetric matrices by columns (EKF)

Determines where and how severe the difference between two matrices is

located. Designed to test K construction.

Sparse version of Matlab’s mf2th.m. (GN)

This code sets up the "true" Gauss-Markov system model to be simulated

and passes it to the state estimator. (GN, G. Clark)

File to read in NTS data, convert to g’s, and save as .mat files for me and

ASCII files for MEs ~

Loads the NTS files of choice, runs findflaw to do damage detection (GN)

Calculates the initial conditions of the NTS structure using interpolation

(EKF)

Plots the psds of the outputs from the ME’s NTS model

Calculates the sensitivity of the NTS mode frequencies to changes in E

GB’s version of nuderest.m, which selects the step size for numerical

differentiation (GN)

Computes the observability m~’trix Q used to test for "complete

observability" of a. discrete-time linear time-invariant system. (GN, G. Clark)

Seriously gutted version of ode45. It was gutted to improve the memory

requirements and speed of calculating Pprop for EKF_algo. Wildly

successful. (EKF)

1-D EKF testbed, early version of EKF_SHO.m

3-D representation of the change in P per sample for the EKF

Rewrite Of Matlab’s pem.m routine so that it is more efficient and

able to work with sparse matrices. Only works with theta form. (GN)

SAA but used different version of Kalman gain (GN, not used)

Attempted (unsuccessfully) to run the above symbolically (GN)

Sparse version of Matlab’s pc.m

Changes real matrices into symbolic ones with all nonzero values convened to

symbolic terms

Reads in ASCII files with model elemental information and sfive it in .mat

form. Very useful when adding new models!

Reads in ASCII files with model node information and save it in .mat form.

Also very useful when adding new models!

Reads in ASCII files with acceleration info in 2rid column and save it in .mat

form. MEs usually supply time in first column and acceleration in second.

73

ret_efreq.m

SHOacc.m

shop.m

shox.m

SIM_Discrete.m

sparseit.m

sqrtmslow.m

subs_sym.m

thl0DOF.m

thlODOFMCK.m

th400DOF.m

th400DOF_big_K.m

th400dof_caller.m

th400DOF_small_k.m

th50DOF.m

thNTS5DOF.m

thNTS5DOFMCK.m

thNTS5DOF_init_cond.m

vdpgems.m

vdpode_gb.m

vec2matc.m

vec2mats.m

Whiteness_Test.m

wng.m

Wssr.m

Calculates the eigenfrequencies given M, K - centralizes the calculation

needed to build C

Converts displacement and velocities into acceleration given a damped SHO

system

SHOP propagation

SHO X propagation

Supervisory routine that simulates the output of a given model. (GN, G.

Clark)

Examines a matrix as sparses it if it is sparse enough

Perturbed version of Matlab’s sqrtm.m (GN)

Speeds up the subs routine in the symbolic toolbox by using the symmetric

properties ofthe matrices to be subsituted

Specifies a 10 DOF state-space model using the parameters given (GN).

SAA, only returns the M, C, and K matrices (EKF)

Specifies a 400 DOF state-space model using the parameters given (GN).

SAA, but uses the Kij as the parameters. (GN)

Constructs the theta model using th400DOF.m (GN)

Original version of th400DOF.m (GN, not used)

Specifies a 50 DOF state-space model using the parameters given (GN)

Specifies a NTS 5 DOF state-space model using the parameters given (GN)

SAA, only returns the M, C, and K matrices (EKF)

SAA, only the free variables are the initial conditions

Runs the vdpode so that it resembles the GEMS output

My own specification of the VDP ODE

Turns vectorized column matrices back into matrices

Turns vectorized symmetric column matrices back into matrices

Performs statistical whiteness tests on a given signal (G. Clark)

White noise generator, use idinput.m instead.

Performs the Weighted Sum Squared Residual (WSSR) test on an innovations

vector (G. Clark)

AM Files - these were originally written by A. Meyer, modified in some way by me.

Files2accel.m

Files2acce125.m

Reads in acceleration data from ME ASCII data files and translates into

matrices. Calls Files2Matsaccel.m.

SAA but with 25 files.

74

Files2Matices.m

Files2Matsaccel.m

Files2Matsacce125.m

Files2MCK.m

Reads in model data from ME ASCII data files and translates into matrices.

Called by Files2MCK.M.

Child of Files2accel.m

Child of Files2accel25.m

Major file used to convert the ME model descriptions into something we can

use. Calls Files2Matices.m.

Backup copies are made at regular intervals onto the C drive of the NT machine. ~ld versions

are saved in OLD folders with the version number appended after the original ending. For

example, version 2.2 of EKF_[D.m is saved as EKF_ID.22.m.

Interdepartmental letterhead
Mail Station: L-271
Ext: 33088

To: Greg Clark
Jim Candy
Dave McCallen
Matt Hoehler

From: Greg Bumett

CC: Larry Ng

Re: System ID algorithm

3/9/99

Hello everyone,

I thought I would put a memo together to outline the algorithm I am using for system identification. The

problem is this: we want to identify discrepancies between a "best guess" model and the actual model.

The differences could be due to modeling inaccuracies, or by damage to an already-modeled structure.

This procedure starts with the "best guess" model of the system and proceeds to calculate an improved

model that corresponds best (in an innovation least-squares sense) to a given input and output. Changes

in the model or the structure can be determined by observing the differences between the "best guess"

model and the improved model.

The algorithm I have constructed so far is this:

1) We are given a "best guess" model of the system by the ME guys. In this memo I will use the 5

DOF system. This "best guess" model consists of K and M matrices, which we use to calculate a C

matrix. The M, C, K matrices are then used to form the continuous F, G, and H matrices of the state-

space model. The matrices are as follows:

M = 1.0e+003 *

5.0450 0 0 0 0

0 5.0450 0 0 0

0 0 5.0450 0 0

0 0 0 5.0450 0

0 0 0 0 3.8099

University of California

[L_~Lawrence Livermore
National Laboratory

K = 1,0e+006 *

3.2443 -1.6222 0

-1.6222 3.2443 -1.6222

0 -1.6222

0 0

0 0 0

C = function of M and K

F=

0 0

0 0

3.2443 -1.6222 0

-1.6222 3.2443 -1.6222

-1.6222 1.6222

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-643.08 321.54 0 0 0

321.54 -643.08 321.54 0 0

0 0

0 0

G = 1.0e-003 *

321.54 -643.08 321.54 0

321.54 -643.08 321.54 0

0 425.78 -425.78 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.1982 0 0 0 0

0 0.1982 0 0 0

0 0 0.1982 0 0

0 0 0 0.1982 0

0 0 0 0 0.2625

1.00 0 0 0

0 1.00 0 0

0 0 1.00 0

0 0 0 1.00

0 0 0 0

-223.77 89.15 0 0

89.15 -223.77 89.15 0

0 89.15 -223.77 89.15

0

0

0

0

1.00

0

0

0

89.15 -223.77 89.15

0 118.05 -163.53

University of California

[L~Lawrence Livermore
National Laboratory

H ...

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

2) The F matrix (which depends on M, C, and K) and the G matrix (which depends only on M)

modified into A, B, and C to conform with Matlab’s notation by inserting NaN wherever a

parameter can be thought of as variable. For this first test, only K was modified, so only the nonzero

values in F are changed to NAN..

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

NaN NaN 0 0 0 NaN NaN 0 0 0

NaN NaN NaN 0 0 NaN NaN NaN 0 0

0 NaN NaN NAN 0 0 NAN NAN NAN 0

0 0 NAN NaN NAN 0 0 NAN NAN NaN

0 0 0 NaN NaN 0 0 0 NaN NAN

B --- G;

C=H;

3) The nonzero values that were replaced in A are saved ina vector "init_param" to use as the initial

parameters for the identification.

University of Califomia

Lawrence Livermore
National Laboratory

init_param= -643.08, 321.54,-223.77, 89.15, 321.54,-643.08, 321.54, 89.15, -223.77, 89.15,

321.54, -643.08, 321.54, 89.15, -223.77, 89.15, 321.54,-643.08, 321.54, 89.15, -223.77, 425.78,

425.78, 118.05, -163.53

78

If you compare init_param to F, you will see that the values are read row by row to be used as initial

values.

4) An input (u) and output (y) matrix are formed into the z matrix using:

Z = [r2c(y(l,:)) r2c(y(2,:)) r2c(y(3,:)) r2c(y(4,:))

r2c(u(l,:)) r2c(u(2,:)) r2c(u(3,:)) r2c(u(4,:))

where r2c changes the row to a column vector. The output can be from either actual measurements or

through simulations (such as using using lsim.m from the control toolbox in Discrete_Model_Builder).

The simulations are done using the Gauss-Markov state propagation outlined in Jim’s book, p. 33. The

three noise covariance matrices are the ones specified by Greg in his report, with Rv and Rw recalculated

after the random noise is generated. The input is white noise, on the fifth floor,, with a Ts of 0.01 and a

length of 25 seconds.

5) The initial values for the states (x0) is set to all zeros.

x0 = zeros(Nx, l); % initial state vector

6) The noise matrix W is formed as

W = eye(ra,rc) % noise autocorrelation

where ra and rc are the number of rows in A and C, respectively.

7) The model structure is formed using the following commands:

ms = modstruc(A, B, C, D, W, x0);
th = ms2th(ms, ’czoh’, init~aram, Ree(:,:,end), Ts);

% THETA = MS2TH(MS,CD, PARVAL,L~BDA,T)

where lambda is the covariance matrix of e(t), Ree, and we use the last value. This is calculated

flaw_detection.m.

Univers#y of California

[L_~Lawrence Livermore
National Laboratory

8)

9)

The parameter estimation is performed by:

[thnew, iterinfo] = pem(z,th, [],i00, [], [], [] ,Ts, ’trace’);

% [TH, IT_INF] = PEM(Z,THSTRUC, index,maxiter,tol,lim,maxsize,T)

The new estimate for theta is returned to state-space so that the differences can be compared:

[Fn Gn Hn romp Wn x0] = th2ss(thnew); % back to state space from theta

As an example, I have taken the original K matrix and perturbed it so that k3 has been reduced to 50% of
.lits previous value. This changes K so that it is now

K = 1.0e+006 *

3.2443 -1.6222 0 0 0

-1.6222 2.4332 -0.8111 0 0

0 -0.8111 2.4332 -1.6222 0

0 0 -1.6222 3.2443 -1.6222

0 0 0 -1.6222 1.6222

I then ran flaw_detection.m with a dampingcoefficient of 5% to see if a flaw was discovered.

Whiteness_test.m returned the following results for each innovation:

E(1): ***** White *****

Percent out of bounds = 4.32.

E(2): #’###’# Non-White #####

Percent out of bounds = 23.10.

E(3): ##### Non-White #~#

Percent out of bounds = 35.17.

E(4): ##### Non-White #####

Percent out of bounds = 6.08.

University of California

Lawrence Livermore
National Laboratory

E(5): ##### Non-White #####

Percent out of bounds = 5.52.

This indicates that something is wrong with the model around states 2 and 3, especially state 3. This

corresponds well to the known deficiency. Now we pass R~, u, and y to findflaw.m and see if it can

detect the change in K. After 16 iterations, it derived the following, where pmodelK is the perturbed

model of K, calcK is pem.m’s calculated estimate of K, and diffK is the difference between the two:

pmodelK = 1.0e+006 *

3.2443 -1.6222 0 0 0

-1.6222 2.4332 -0.8111 0 0

0 -0.8111 2.4332 -1.6222 0

0 0 -1.6222 3.2443 -1.6222

0 0 0 -1.6222 1.6222

calcK = 1.0e+006 *

3.1361 -1.5372 0 0 0

-1.6487 2.3961 -0.7204 0 0

0 -0.9362 2.50778-1.7339 0

0 0 -1.4930 3.1496 -1.5480

0 0 0 -1.7302 1.6792

diffK=modelK-calcK= 1.0e+005 *

1.0821 -0.8492 0 0 0

0.2656 0.3719 -0.9071 0 0

0 1.2512 -0.7456 1.1179 0

0 0 -1.2918 0.9473 -0.7418

0 0 0 1.0799 -0.5703

University of California

[L_L~Lawrence Livermore
National Laboratory

iterinfo =16.000 -0.0011 0.0068 (last iteration, last fit improvement, norm of last search vector)

This is quite encouraging, as the changes to K shown in pmodelK are mirrored quite well in the

calculated calcK. I will continue to test this algorithm, and when I am confident of its abilities I will use

it to determine the changes Matt made in M and K for the 5 examples he provided me.

Still to do:

1)

2)

Allow M to vary as well, see if the solution still converges.

Restrict the variation of the parameters to those associated with the non-white states. For example,

in this case states 2 and 3 were the only ones to exhibit significant non-whiteness. Therefore

perhaps we would only let pem.m treat as variables the parts of F that correspond to states 2 and 3.

This may facilitate convergence of the solution.

University of California
Lawrence Livermore
National Laboratory

82

Interdepartmental letterhead
Mail Station: L-271
Ext: 33088

To: Greg Clark
Jim Candy
Dave McCallen
Matt Hoehler

From: Greg Burnett

CC: Larry Ng

Re: Flaw detection and identification algorithm (5 DOF)

3/15/99

Hello everyone,

After my last memo, I got several excellent suggestions from Jim and Dave and was able to construct a

system identifier that works quite well. I have incorporated it into the previous flaw detector, and now

have a complete flaw detection and identificationalgorithm that works very well for the five degree of

freedom problem. This memo is to explain the algorithm and to once again solicit comments.

The layout of the algorithm is shown in Figure 1, presented at the end of this memo. It will be helpful to

follow along with it as we go.

1) In FLAW_DETECTION, we enter the model order and initialize the time vector to be used to do the

testing and simulation. We can simulate the output of a system (using normal or perturbed M and

matrices) using SIM_DISCRETE, which uses MF2TH (described below) to construct F,t, Gd, and

(the discrete versions of F, G, and H, our system mhtrices). An appropriate input is loaded (in this

case (white noise * 1000) at the fifth floor with a Ts of 0.01 and a length of 25 seconds). It then uses

Jim’s Gauss-Newton progression algorithm with system and measurement noise to simulate a noisy

output (Ysim). One difference I inserted here was to recalculate Rv and Rw after they had been

created. It gives a more accurate picture of the covariance functions of the noise. If an actual

University of California

[~L~Lawrence Livermore
National Laboratory

measurement or test series is available, the corresponding u and y matrices are loaded and the

simulation section is not used.

2) The simulated or actual inputs and outputs are fed into KF_CALLER. It first calls MODEL_EST,

which loads the original (unperturbed) M and K matrices and passes them

DISCRETE_MODEL, BUILDER, which returns the matrices to be used for Kalman estimation:

Fde, Gde, and Hoe. Note that we can use the same method (MF2TH), but I used the older way to make

sure the two were compatible. ~

3) The matrices Rw, Rv, Po, Xinit, and Fde, Gde, and HO~ are all passed to KF, which uses the Kalman filter

to predict the outputs (yp). The innovations (errors in predicted output, y-yp) are recorded andsent

a whiteness tester, in this case WHITENESS_TEST but for larger models it will be WSSR. If the

innovations are considered non-white, FINDFLAW is launched to determine where the faults in the

model are.

4) In FINDFLAW, the original M and K are loaded. This is the "best guess" model of the system

determined by Dave and Matt. We use the K and M matrices and a damping constant to calculate a

C matrix. The M, C, K matrices are then used to form the continuous F, G, and H matrices of the

state-space model. The matrices are as follows:

M= 1.0e+003 *

5.0450 0 0 0 0

0 5.0450 0 0 0

0 0 5.0450 0 0

0 0 0 5.0450 0

0 0 0 0 3.8099

8:

K = 1.0e+006 *

3.2443 -1.6222 0 0 0

-1.6222 3.2443 -1.6222 0 0

0 -1.6222 3.2443 -1.6222 0

0 0 -1.6222 3.2443 -1.6222

0 0 0 -1.6222 1.6222

C = function ofMand K

University of California

[L~Lawrence Livermore
National Laboratory

84

I constructed a function called FIVEDOF.M which has the following form:

[A,B,C,D,K,x0] = fiveDOF(pars,T,aux);

The input arguments are as follows: Pars are the parameters to be estimated, in our case they are the

changes to the values (dm and dk) of the underlying ml, m2, m3, m4, m5 and kl, k2, k3, k4, k5values

that construct the matrices M and K. T is the sampling time for the matrices, it is zero for continuous

matrices. Aux contains auxiliary terms, in this case ml...m5 and kl...k5. FIVEDOF takes these values

and constructs the A, B, C, D, K, and x0 matrices necessary for our application (this is not K the

stiffness matrix, it is K the noise matrix, using Matlab’s notation). If discrete matrices are needed, it

discretizes them using C2D. In this way FIVEDOF limits the number of unknowns to 10 (5 m and 5

values) and forces the correct symmetric form for F and G. Right now an x0 of all zeros and a K of

K --.

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 .0 0

0 0 0 0 0

are used.

5) An input (u) and output (y) matrix are formed into the z matrix using:

Z = [r2c(y(l, :)) r2c(y(2,:)) r2c(y(3,:)) r2c(y(4, :))
r2c(u(l,:)) r2c(u(2,:)) r2c(u(3,:)) r2c(u(4,:))

where r2c changes the row to a column vector.

University. of California

[~ Lawrence Livermore
National Laboratory

6) The model structure is formed using the following command:

thtrue = fivedof_th(M,K,Ree(:,:,end),dk,dm);
% returns "true" theta modal used for the experiment

where ko and m0 are calculated and given to mf2th

m = diag(M); % M already diag

k0 = K(5,5); % nominal value for the k’s

% now for th - uses form TH = MF2TH(MODEL,CD, PARVAL,AUX,LAMBDA,T)
% parval are the things we are changing, aux is nominai values, aux(ll)

damping

th = mf2th(’fivedof’,’c’, [dk dm], [k0 k0 k0 k0 k0 c2r(m) 5], Ree,

= percent

and where dm = dk = [0 0 0 0 0] for the unperturbed system. The last value of aux is the damping

coefficient in percent. Lambda is the covariance matrix of e(t), Ree, and we use the last value. This

calculated by KF.

7) The parameter estimation is performed by:

[thnew, iterinfo] = pem(z,thtrue, [1:5],i00, [le-12], [], [],Ts, ’trace’);

% [TH, IT_INF] = PEM(Z,THSTRUC,index,maxiter,tol,lim, maxsize,T)
% index = [1:5] = only estimate first five unknowns

where we have further limited the pars to only the first five values, the dk vector. Thus we are assuming

only the values of k change for this example. I will address changing the m values and changing both

below.

8) The new estimate for theta is returned to state-space so that the differences can be compared:

[Fn Gn Hn temp Wn x0] = th2ss(thnew); % back to state space from theta

The lower half of Gn yields M, and the lower right fourth of F, yields K.

As an example, I have taken the original K matrix and perturbed it so that k~ has been reduced by

87.5%, k2 has been reduced by 75%, k3 has been reduced by 10%, k4 has been reduced by 33%, and k5

has been reduced by 66% of its previous value. This changes K so that it is now

K = 1.0e+006 *

0.6083 -0.4055

-0.4055 0.5678
Unive~lty of Califom~

0 0 0

-0.1622 0 0

[~L~Lawrence Livermore
National Laboratory

0 -0.1622 1.2437 -1.0814 0

0 0 -1.0814 1.6222 -0.5407

0 0 0 -0.5407 0.5407

86

I then ran flaw_detection.m with a damping coefficient of 5% to see if a flaw was discovered.

Whiteness_test.m returned the following results for each innovation:

E(1): ##### Non-White #####

Percent out of bounds = 90.7274.

E(2): ##### Non-White #4;4¢##

Percent out of bounds = 91.0472.

E(3): ##### Non-White #####

Percent out of bounds = 80.7354.

E(4): ##### Non-White #####

Percent out of bounds = 87.6099.

E(5): ##### Non-White #####

Percent out of bounds = 78.1775.

In this case, unlike the earlier one where the damage was localized, the whiteness test is not terribly

useful, as there is much damage over the entire structure.

Now we pass R~e, u, and y to FINDFLAW to see if it can.detect the change in K. After: 9 iterations, it

derived the following, where pmodelK is the perturbed model of K, calcK is PEM’s calculated estimate

of K, diffK is the difference between the two, and percK is the average percent error:

University of California

[~_~Lawrence Livermore
National Laboratory

pmodelK = 1.0e+006 *

0.6083 -0.4055 0 0 0

-0.4055 0.5678 -0.1622 0 0

0 -0.1622 1.2437 -1.0814 0

0 0 -1.0814 1.6222 -0.5407

0 0 0 -0.5407 0.5407

calcK = 1.0e+006 *

0.5905 -0.4006 0 0 0

-0.4006 0.5560 -0.1554 0 0

0 -0.1554 1.2744 -1.1190 0

0 0 -1.1190 1.6580 -0.5391

0 0 0 -0.5391 0.5391

diffK= 1.0e+004*

1.7782 -0.4968 0 0 0

-0.4968 1.1791 -0.6823 0 0

0 -0.6823 -3.0713. 3.7535 0

0 0 3.7535 -3.5867 -0.1669

0 0 0 -0.1669 0.1669

percK = 2.1854

iterinfo = 9 -0.0000 0.0000 (last iteration, last fit improvement, norm of last search vector)

This is quite encouraging, as the changes to K shown in pmodelK are mirrored qtiite well in the

calculated calcK, within about a 2% error. This was the case for many of the changes I tried, although

most only took 2-5 iterations. The errors were all in the 2-3% range.

University of California

Lawrence Livermore
National Laboratory

88

I have tested the algorithm with changes in m only, and have gotten similar results: 2-3% accuracy with

around 2-5 iterations. This includes one interesting case where I modified m4 by +(ms * ~A) and m5

(ms * 3,4), simulating ~,~ of the mass from the fifth floor falling on the fourth. I have also tested a variety

of simultaneous changes in m and k, which requires finding all I0 parameters simultaneously. The

accuracies are a little looser in this case, from 1.2 to 10% with an average of about 5.4%. The number

of iterations can also increase dramatically, ranging from 8 to 72. This indicates that our predictor might

not be as stable as it should. Indeed, I do get a warning about the predictor being unstable, so if this can

be fixed the number of iterations should fall.

As a final test, Matt supplied 4 series of 5 outputs, each series representing a simple perturbation of the k

values. My assignment was to determine how the k values had been changed. I was given the measured

output, the input (white noise at the fifth floor as above), and the unperturbed model structure.

I ran FLAW_DETECTION using the default value of "tol" in FINDFLAW, 0.1. This determines the

accuracy of the result as the iterations are continued until the search vector norm is less than "tol". The

first round of results appear on the next-to-last stapled page.

For tol = 0.1, the results are interesting. Each perturbation required only a single iteration, indicating

thatperhaps tol should be lowered. The results indicated that:

Pert. 1: kl -> kl .* (0.5) (Actually 0.488)

Pert. 2:

Pert. 3:

Pert. 4:

k3 -> k3 .* (0.5) (Actually 0.586)

k5 -> k5 .* (0.5) (Actually 0.547)

kl -> kl .* (0.8) (Actually 0.817)

k2 -> k2 .* (0.8) (Actually 0.821)

k3 -> k3 .* (0.8) (Actually 0.822)

k4 -> k4 .* (0.8) (Actually 0.824)

k5 -> k5 .* (0.8) (Actually 0.822)

To determine if greater accuracy was possible, I lowered tol to le-12, effectively forcing the algorithm

to search until it couldn’t do any better. The results are on the last stapled page, and are:

University of California

[L.~Lawrence Livermore
National Laboratory

Pert. 1:

Pert. 2:

Pert. 3:

Pert. 4:

kl -> kl .* (0.5)

k3 -> k3 .* (0.5)

k5 -> k5 .* (0.5)

kl -> kl .* (0.8)

k2 -> k2 .* (0.8)

k3 -> k3 .* (0.8)

k4 -> k4 .* (0.8)

k5 -> k5 .* (0.8)

(Actually 0.504, 6 iterations)

(Actually 0.504, 13 iterations)

(Actually 0.498, 7 iterations)

(Actually 0.794, 9 iterations)

(Actually 0.793)

(Actually 0.792)

(Actually 0.791)

(Actually 0.805)

Matt has informed me that the above k identifications are correct. Thus for a single iteration we had a

mean error of about 3.5%. For 5 to 12 more iterations, the mean error was down to about 0.5%.

Things to consider and to do next:

1) Do we want to use the diagonal Jordan form for F? It diagonalizes F, at the cost of making G and H

full. This will cause performance of higher order systems to suffer, while making the transformation

of F much easier.

2) This procedure only works for full matrices. It will probably take considerable effort to change

PEM so that it will take sparse matrices as arguments. I will have to dissect it and its subroutines to

see.

3) The next step is probably to repeat these results on the 40ODOF system using 5 inputs and outputs

as before. Then we can progress to the NTS structure.

University of California
Lawrence Livermore
National Laboratory

INCLUDED FOR THE ELECTRONIC VERSION

Tol = O. 1

For perturbation 1:

deltak= 48.8626 -2.0639 -1.2526 1.1207 1.2829

calcK = 1.0e+6 *

2.4852 -1.6556 0 0

-1.6556 3.2981 -1.6425 0

0 -1.6425 3~2465 -1.6040

0

0

0

0

0

0 -1.6040 3.2053 -1.6014

0 0 -1.6014 1.6014

90

iterinfo = 1.0000 -0.0000 0.0000

For perturbation 2:

deltak= -6.7459 -6.2534 58.6045 -2.1101 1.7403

calcK = 1.0e+6 *

3.4552 -1.7236 0 0 0

-1.7236 2.3951 -0.6715 0 0

0 -0.6715 2.3279 ~-1.6564 0

0 0 -1.6564 3.2503 --1.5939

0 0 0 -1.5939 1.5939

iterinfo = 1.0000 -0.0000 0.0000

Forpe~urbation 3:

deltak= 0.1973 0.3908 1.4524 4.4268 54.6924

calcK = 1.0e+6 *

3.2348 -1.6158 0 0 0

-1.6158 3.2144 -1.5986 0 0

0 -1.5986 3.1490 -1.5504 0

University of California
Lawrence Livermore
National Laboratory

0

0

0 -1.5504 2.2853 -0.7350

0 0 -0.7350 0.7350

iterinfo = 1,0000 -0.0000 0.0000

Forpe~urbation 4:

deltak= 18.3379 17.9310 17.8071 17.5667 17.8527

calcK = 1.0e+6 *

2.6560 -1.3313 0 0

-i.3313 2.6646 -1.3333 0

0 -1.3333 2.6705 -1.3372

0

0

0

0

0

0 -1.3372 2.6698 -1.3326

0 0 -1.3326 1.3326

iterinfo = 1.0000 -0.0000 0.0000

Tol = le-12

For perturbation 1:

deltak= 50.3705 0.8445 0.9643 1.1813 -0.5380

calcK = 1.0e+006 *

2.4135 -1.6085 0 0

-1.6085 3.2150 -1.6065 0

0 -1.6065 3.2095 -1.6030

0

0

0

0

0

0 -1.6030 3.2339 -1.6309

0 0 -1.6309 1.6309

iterinfo= 6.0000 0.0000 0.0000

University of California
Lawrence Livermore
National Laboratory

92

For perturbation 2:

deltak= 0.6610 0.7923 50.3710 1.2274-0.3737

calcK = 1.0e+006 *

3.2208 -1.6093 0 0

-1.6093 2.4144 -0.8051 0

0 -0.8051 2.4073-1.6023

0

0

0

0

0

0 -1.6023 3.2305 -1.6282

0 0 -1.6282 1.6282

iterinfo= 13.0000 0.0000 0.0000

Forpe~urbation 3:

deltak= 0.6875 0.7690 0.9768 0.8531 49.8414

calcK = 1.0e+006 *

3.2207 -1.6097 0 0

-1.6097 3.2160 -1.6063 0

0 -1.6063 3.2146 -1.6083

0

0

0

0

0

0 -1.6083 2.4220 -0.8137

0 0 -0.8137 0.8137

iterinfo= 7.0000 0.0000 0.0000

Forperturbation 4:

deltak= 20.6029 20.6629 20.7924 20.8551 19.4538

calcK = 1.0e+006 *

2.5749 -1.2870 0 0 0

University of California ’

[~_~Lawrence Livermore
National Laboratory

-1.2870 2.5719 -1.2849 0 0

0 -1.2849 2.5687 -1.2839 0

0 0 -1.2839 2.5904 -1.3066

0 0 0 -1.3066 1.3066

iterinfo = 9.0000 0 0.0000

University of California

Lawrence Livermore
National Laboratory

94

Flaw detection ,’rod identificatioi algoritlun

Loads M, K, ~’n, Ak
Uses th2mfto estimate
Fd, Od, Hd, uses G-N
progression (JVC) to

simulate y

8ira Discrete

Flaw Detection

ILoad in measured
andu

u, ysim

Model matches,
end

[[_~Lawrence Livermore
National Laboratory

KF_Caller ~

~(Mord, Ts, Tstart, TfinaJ. Nx

~
Loads ongh’~1 "best guess" M, K

/ with no changes
lv~odel_Est

~M, K, Ts, Tslart, Tfinal, Mord

~
Uses manual method (JVC and

Discrete_Model / OAC) to build Fde, Gale, Hde

Builder

~Fde, Ode, Hde, Rw, Rv, Po, xinit

~_...~Calculates l~redicted y,

Y-,_F
innovations, and Ree

New F, 0, H matrices
that match y, u~

Findflaw "~ Fn, On, Hn

~_~Loads in "best guess" M andK
Estimation parameters ~, ~
i~t~!i~ed to zero

95

Interdepartmental letterhead
Mail Station: L-27I
Ext: 33088

To:

From:

CC:

Re:

Greg Clark
Jim Candy
Dave McCallen
Matt Hoehler

Greg Burnett

Larry Ng

Integration filter and results

3/29/99

This is a report on the filtering algorithm used to do the double integration that

converts the noisy (drifting) accelerometer data from the NTS experiment. This data was

marred by a long-term (low frequency) drift of the accelerometer voltage, which, when

doubly integrated, resUlted in a large distortion in the calculated, displacement. This low

frequency noise must be removed before the integration can be performed. Luckily, the

experiment w.as set up so that only s.ignals between 3 and 51 Hz can be considered to be

actual data. :.

The indefinite integration from acceleration to velocity and then again to position of

an arbitrary signal of frequency f proceeds as follows:

a = sin(e0t) = sin(2~’ft)

v = j’adt = - cos(2~ft) + Vo

x = ~ v dt = - sin(2nft)
(2~f)z ~" vot + o

If we assume v0 = x0 = 0, then for any single frequency the ratio of the acceleration

magnitude to the displacement will be (2nf)z. This can be used to check the accuracy of

the digital integration at several frequencies. It is important when doing so that the time

vector begin with zero and not a finite number, otherwise the latter two terms in the last

96

equation come into play and distortion occurs. For the same reason a zero will be

appended to the beginning of each data file to ensure stability.

The algorithm proceeds in the following manner:

1) The accelerometer data is read in and multiplied by 386.4 to translate English unit g’s

into inches.

2) The data is filtered with an 8th order Chebychev I1 HP filter that has a 3-dB frequency

of 3 Hz and has the stopband at -60 dB. This filter is used because the Cl~ebychev II

filters have a maximally flat passband, eliminating any distortion in the passband.

The noncausal Matlab command FILTFILT is used, which filters the data once with

the filter, then reverses the data in time and filters it again, effectively doubling the

order and eliminating any phase distortion. See figure 1 for the response of this filter.

3) The data is filtered with a 19th order Chebychev I1 HP filter that has a 3-dB frequency

of 48.5 Hz and has the stopband at -60 dB. The FILTFILT command is also used.

The response is shown in figure 2.

4) The resulting signal is integrated (to convert from acceleration to velocity) using

digital filter approximation to an analog integrator. The analog integrator response is

simply

H,(s)=-~
S

Using the bilinear transformation,

Hi (z) ---

or in Matlab format,

2(z-1

97

Frequency response for HP filter

0

-20

-40

-60

0
, I I i I I I I I .I

10 20 30 40 50 60 70 80 90
Frequency (Hertz)

00

100

® 0

~ -I00

~ -2oo
r-
n -300

-400
0 10 20 30 40 50 60 70 80 90 100

Frequency (Hertz)

Figure 1. Frequency response for Cheb II HP filter with 3 dB frequency at 3 Hz.

Ai =[1 --1]

The frequency response for the digital integrator (red trace) is shown in figure 3 along

with the response from the continuous-time integrator (red). The phase response for

both is -90 degrees at all frequencies and is not shown. Note that the response of the

digital integrator is excellent at low (< 30 Hz) frequencies. Indeed, at’ 30 Hz the

difference is only 0.2 dB. At 40 Hz, the difference is only 0.3 dB, and at 50 Hz the

difference is 0.45 dB. The fit gets rapidly worse above 100 Hz due to the presence of

a zero in the transfer function at z = -1. This zero is absolutely necessary to get the

required -90 phase shift at all frequencies, so the distortions in the magnitude

98

Frequency response for LP filter

-60

-80

-100
0 10 20 30 40 50 60 70 80 90 1 O0

Frequency (Heaz)

.~ -200

,~ -400
03
,-.

-600

10 20 30 40 50 60 70 80 90 1 O0
Frequency (Hertz)

Figure 2. Frequency response for Cheb II LP filter with the 3-dB frequency at 48..5 Hz.

response cannot be removed. Care must be exercised so that the distortions due to the

differences do not significantly affect the integration.

5) After integration, the data is again HP filtered using the filter shown in Figure 1.

This is to remove the low frequency noise that integrating elevates to a significant

level.

6) The integration and HP filtering are repeated for the change from velocity to

displacement.

Testing the integration

To test the accuracy of the integration, I created sine waves ranging in frequency

between 2 and 51 Hz and doubly integrated them using the filtering algorithm above. At

each frequency the magnitude of the integrated signal was calculated using the method

above and the results compared to the filtered signal. The errors at each frequency were

99

Magnitude response of 1/s (blue) and digital integrator (red)

-2O

-~10

-60

-80

-I00

-120 ~ ~ ~ I
0 20 40 60 80 1 O0 120 140 160 180

Frequency (Hz)
200

Figure 3. Comparison between the magnitude response for continuous time integrator
(blue, upper) and a discrete time integrator (red, lower).

tabulated and are shown in Figure 4. The max error from 4 to 47 Hz is 10.1%, and the

mean absolute error over the same range is 2.13%. Thus we may be fairly confident that

the integration is accurate between 4 and 47 Hz.

One anomaly that has been observed is spurious 3 and 50 HZ signals introduced into

the data by the filtering process. This is shown in Figure 5, where a 25 Hz sine has been

used as the acceleration. The psd of the original data .(top left) shows only the 25

component. The psd of the signal after it has been HP and LP filtered shows two more

frequency components at 3 and 50 Hz, which remain throughout the rest of the

integrating process. It is not known at this time what is causing the extra frequencies, but

they are normally more than 20 dB down and do not seem to appreciably distort the

displacement signal.

Integration of representative data

100

Percent error vs. frequency for digital integrator

*l "[...... .T

25 30
Frequency (Hz)

I

Figure 4. Percent error from 4-47 Hz for the digital integrator.

From the first swept experiment, strucos 1.mat, channel 9 was recalled and used as the

acceleration to the system. The displacement was generated using the integrating filter.

The results are plotted in Figure 6, where the acceleration is on top (in g’s) and the

displacement on bottom (in inches). The magnitude of the displacement has been

verified using the method above. The progress at each stage in the algorithm is shown in

Figure 7.

Conclusions

The integration method described above may be used on data that contains

information between 4 and 47 Hz with confidence. The magnitude of the doubly

integrated signal matches closely to that expected from first principles. However, further

research should be done to determine why extra frequencies are being introduced into the

signals by the HP and LP filtering processes.

101

Original

200

E

E -50

~. -~oo

o

100

50

0

-50

-100
50 100 150

.Frequency
Integrated and HP filtered

m 50 0

-200
0 50 100 150 200 0

Frequency

-50

-I00

-150

BP filtered

0 50 100 150 200
Frequency

Int twice and HP filtered

50 I O0 150 200
Frequency

Figure 5. Progress along the integrating algorithm with a 25 Hz sine wave used as the
acceleration signal. Upper left: the original signal. Upper right: the signal after HP and LP

filters. Lower left: the signal after one integration and another HP filtering. Lower right: the
signal after the second integration and HP filtering.

102

2

1

0

-1

-2
0 1

0.05

Accelerometer (top) and displacement (bottom)from y9 of strucosl.mat
I ! T 1 1 I----

2 3 4 5 6 f

× I0~

-0.05
0

I I I I

1 2 3 4 5
Samples

I

7

x I0~

Figure 6. Acceleration (top) and calculated displacement (bottom).

103

~60

¯ ~ 40

20

-2on 0

E

Original

50 100 150 200
Frequency

Integrated and HP filtered

-150
0 50 100 150 200

Frequency

E.=

-50

-I00

-200
0

BP filtered

O 50 100 150 200
Frequency

Int twice and HP filtered

50 100 150 200
Frequency

Figure 7. Progress along the integrating algorithm with an actual acceleration signal. Upper
left: the original signal. Upper right: the signal after HP and LP filters. Lower left: the signal

after on6 integration and another HP filtering. Lower right: the signal after the second
integration and HP filtering.

104

System Identification

In the previous section, we discussed methods that can be used to identify the presence of

damage in an established model or model mismatches of undamaged structures. Both situations

result in non-white residuals, and can sometimes indicate the region where the damage has

occurred or the model is lacking. Since the end result is the same (a model mismatch), the two

situations can be considered to be variations of one another. Consequently, we wi~l only treat

model mismatch of undamaged structures in this text. The result is easily generalized for

damage detection.

What is needed in finite element (FE) modeling is a systematic method of improving the

model so that, through an iterative process, very accurate models can be constructed. At present,

the educated guess of the modeler is the only improvement possible. Modelers can tweak

parameters in an attempt to make the model more accurate, but this is a hit-and-miss process.

There is no way to improve the FE model by using the measured response of the system to

measured (or white) inputs. We are proposing a method based on FE modeling but implemented

in a state-space environment using signal processing parameter estimation algorithms. This will

give us the tools to perfect the FE models using measured inputs and outputs of a given physical

system.

Parameter estimation

As the transition from FE modeling to state space and flaw detection has been explained in

the previous section, we will proceed directly to parameter estimation. This is the process

whereby a set of parameters in F, G, and H (arranged in vector form and known as the theta

vector) are set as variables and estimated using iterative techniques. Not every physical constant

in the system is thought of as variable. For instance, the length, width, and mass of a beam may

be known to high precision. In this case, the variables are the strengths of the various types of

connections between beams. They are all represented by various kij, where i and j t:epresent the

location of the k in a matrix that describes the interaction of the various elements at a discrete FE

node location. In our five degree of freedom (DOF) example, there is only a single connection

between each of the 6 nodes and thus the k matrix is just 1 x 1.

The fit of the model to the experimentally derived data (consisting of i inputs andj outputs)

is normally determined using the least squares criterion. As such, the innovation e is defined as

105

and the minimization criterion V is

1 r~l B.2V(0,Z) =.--Z-e(t,0)2
Nt2

where N is the number of time samples.

The expression for the criterion V is then minimized with respect to 0. A fundamental

iterative algorithm for finding the solutions of a function is the Newton metl~od. In one

dimension, this method can be visualized by plotting the function to be solved and then guessing

one of the zero points. A more refined estimate is computed by drawing a line tangent to the

function at our estimate xc (c for current estimate) and determining where this line crosses the

axis. This distance is termed Ax, and the innovation is Ay = Yc = f(xc). Thus

where is the new estimate and

so that

~ = xc - Ax, B.3

Ay f(x¢)
"" "~’txc)=

Ax Ax

f(x¢)
~=Xc f’(x¢)"

Newton’s method comes directly from Newton’s theorem:

X

f(x) = f(xe)+]f’(z)dz
Xc

with the integral approximatedby

so that

X

~ f’(z)dz --- f’(xc)(.x
Xc

B.4

f(x) = f(x¢) + f’(xc)(x

For a minimization problem, the function we want to solve is f’(x), so Equation B.5 above

becomes

f’(x¢)~ = xe - f,(xc)

106

and for matrices this step becomes

J(xe)

H(xc)

where J is the Jacobian and H is the Hessian of the matrix F(xc) which we are trying

minimize.

In the least-squares problem, we want to minimize

f(0) = ½E(0)TE(0) m 2
~e~(0) ..

where E is the innovation function and ei(0) is the i th innovation defined by Equation B. 1 above.

The first derivative of frO) is defined by

Vf(0)

Similarly, the second derivative of ff~) is

d E(0)2 =J(0)rE(0)
dO 2

Vf(0) = d-~J(0)T E(0) = J(0) T J(0)

so that Newton’s method appears as

+ H(0)TE(0)

~ = xc -
J(0)TE(0)

J(0)’r J(0) + H(0)T "

This method converges quite quickly if the initial guess is not too far off and there are no

local minima nearby. Its drawback is that H(0) is quite expensive to obtain, and if the analytical

form of E(0) is not available (as in our case) both J and H will have to be approximated using

finite difference models or secant methods. This means on the order of n (where n is the model

order) calculations for J and (3n2 + n)/2 calculations for H.

In the Gauss-Newton method, the Hessian is discarded and the iteration proceeds as

E(0)
~=Xc-~

J(0)
The expense of the iteration is considerably reduced, but the performance of this method depends

on the magnitude of HE compared to JJ. If HE is much less than J J, this form closely

approximates the pure Newton algorithm. This occurs when E(0) is linear in 0, or when the

B.16

107

innovation E is small. If these conditions are not met, the Gauss-Newton method may converge

slowly or not at all.

Following are a list of advantages and disadvantages of the G-N method from Dennis and

Schnabel p. 225 (1983):

Advantages:

1. Locally q-quadratically convergent on zero-residual problems.

2. Quickly locally q-linearly convergent on problems with small residuals or that ale not too nonlinear.

3. Solves linear least-squares problems in one iteration.

Disadvantages

1. Slowly locally q-linearly convergent on problems with large residuals or that are sufficiently nonlinear.

2. Not locally convergent on problems with large or very nonlinear residuals.

3. Not well defined ifJ doesn’t have full column rank.

4. Not necessarily globally convergent.

In our problem, especially for problems where the outputs are not fully observed, E and J

will not have full column rank (i.e. there are less independent equations than the rank of the

matrix) and this could cause difficulties. Also, if the model is sufficiently different from the

actual structure the G-N algorithm might not converge at all.

To improve the convergence, the damped Gauss-Newton method was developed. It can be

shown that the G-N method (Dennis and Schnabel (1983), p. 226) always takes steps in

correct direction, but sometimes these steps are too large, causing the method to diverge. The

damped G-N algorithm simply takes the second term in Equation B. 15 and multiplies by a

constant of magnitude < 1:

~ = x¢-~E(0) _ xc-X’g
J(0)

where g is defined as the Gauss-Newton search direction and), is determined by one of several

line-search methods (Dennis and Schnabel (1983), Chapter 6.3). One of the simplest (and

used in Matlab) is the halving line search, in which the criterion is tested for ~, = 1, V2, tA, ... until

a lower value for the criterion is found. This causes the damped G-N to be locally convergent

for almost all nonlinear least-squhres problems, including very nonlinear or large innovation

problems. It is significagtly more robust than the regular G-N algorithm. However, the

convergence may be very slow.

B.21 tO8

These are important things to keep in mind as we examine how the damped G-N algorithm

works in our state-space model.

The damped G-N algorithm in state-space

In our state-space model, the inputs u(t) and outputs y(t) in continuous time are related

terms of the states by

~(t) = Fx(t) + Gu(t)

y(t) = Cx(t) + Du(t) + v(t)

and in discrete time by

x(n + 1) = Ax(n) + Bu(n)

y(n) = Cx(n) + Du(n)

The model is first specified in continuous time (by. using the equations of state for an oscillator,

see section 1) and is transformed into discrete time by the following transformation:

B =WIG
A = exp(FT) =I + FTtIJ B.19

where

FT F2T2
t/J= I + m + +... B.20

2! 3!

which may be approximated to N terms for small FT by

¯ I+ FT

(Franklin, Powell, Wo.rkmann, 1990, p.53) which is functionally identical to Equation B.24, but

is possible to implement inexpensively¯ The only approximation is in the number of N terms

used and for small FT, it is quite accurate. For large PI’, however, this requires very large N

(more than 200) as the higher order terms are quite large. A method for calculating exp(A)

large A can be found in Kallstrom, 1973, and it is b+ing requisitioned now so that this

transformation can be done quickly and inexpensively (the Matlab program used ta~es about 30

minutes for a single transform on a fast computer). For small FT, the above transformation takes

less than a second.

Once the discrete matrices are in hand, we can calculate the G-N search direction¯ From

Equation B. 16 we have:

109

g ._

~jT (n)lZ(n)
J’r(0)E(0) t--1

NjT(0)J(0) E j(n)jT (n)
t=l

where again e(n) is the innovation and j(n) is the gradient of the predictor 9. It remains; then,

determine what these are in state space. In general, the state-space prediction models are given

by (with D assumed to be zero)

~(n + I I 0) = A(0)~(n,0) + B(0)u(n) +K(0)e(n)

9(n I 0) = C(0)~(n

where K is the Kalman gain. These equations may be rewritten in a more convenient form as

~(n + 11 0) = [A(0)- K(0)C(0)]~(n, 0) + [K(0)

~,(n 10) = C(0)~(n

where

B.22

z(n) [y(n)]
B.25

= I_u(n)J

and the innovation e(n) has been written out explicitly as (y(n) - C(O)~(n)). This

equations allow simpler processing by calculating a LTI response kernel based on

x[n + 1]= Xx[n]+ ~[n] B.26

with .~ = [A-KC], ~ -" [K B], and 5In] = z[n]. A built-in Matlab function (ltitr.m) is used

calculate the response if full matrices are used, for sparse matrices I constructed a siflailar

function named ltitr_sparse.m.

To find the gradient we differentiate the predictor ~, in B.24 w.r.t. 0:

v(n I e) d(..~(n I O)= c(e)~x (n Ie) + C’x(n B.27
dO

where tI~X is the derivative of 9 w.r.t. 0 and C’ is the derivative of C w.r.t. 0. The quantity

~ can be expressed as the derivative of B.24 (with the 0 argument suppressed)

tt~x (n + 1) = (A - KC)tI~x (n) + (A’- K’C- KC’)~(n) + K’y(n) B.28

The G-N direction g can now be calculated by forming the matrix

tit= iv(1) v(i)]r B.29

B.24

B.23

where there are i indices (variables of the problem), and the matrices W have been vectorized

row by row, and the vector

E = [e(1).i.e(k)]r B.30.

(where k is the number of members of e) and solving for g in an over, determined linear equation

using the LS technique (Ljung p.302) B.31

tPg=E

Now that we have g for our set of parameters, we can search along the g direction, looking

for a lower value of the criterion V. Using the damped G-N method above, we have

0 = 00 + ~ga~ B.32

where 00 is the old theta parameters and ~, is the line search constant. It is varied (as stated

above) only if a lower value of the criterion cannot be found. That is, ~, starts out as 1. The

parameters A, B, C, K, and X0 are calculated from the given model using the new 0. The

innovation and criterion are calculated, and if the criterion is not lower, it is assumed the

algorithm has overshot and the process is repeated with ~, = V2. This continues until a lower

1value is found or until ~, = ~-. At this point the algorithm terminates.

If a lower value of V is found, the algorithm checks to see if V is below the termination

threshold. If it is not, the new 0 vector is used to calculate the innovation, predictor, and gradient

and a new search direction is calculated. The process repeats until V is less than the specified

threshold. Then the most current 0 is returned as the solution to the problem.

We have not discussed observability yet, which will be addressed in the next memo, along

with algorithms designed especially for sparse systems such as ours.

I10

References:

1. J.E. Dennis and R.B. Schnabel (1983), chapter 10. "Numerical Methods for Unconstrained

Optimization and Nonlinear Equations", Prentice-Hall, Englewood Cliffs, NJ. ISBN 0-13-

627216-9

111

2. Lennart Ljung (1987). "System Identification theory for the user". Prentice-Hall,

Englewodd Cliffs, NJ. ISBN 0-13-881640-9

3. Franklin, G.F., Powell, J.D., Workman, M.L. (1990). "Digital control of dynamic systems".

Addison-Wesley Publishing Company, Reading, MA. ISBN 0-201-i 1938-2

4. Kallstrom, C. (1973). "Computing EXP(A) and the integral of EXP(AsJ ds". Report

Lund Institute of Technology, Division of Automatic Control, March 1973. Not yet located.

112

Interdepartmental letterhead
Mail Station: L-271
Ext: 33088

To:

From:

CC:

Re:

Greg Clark, Jim Candy

Greg Burnett

Dave McCallen

Continuous to discrete transformations

6/2/99

Hello Greg and Jim,

I have run into a problem while scaling the parametric identification algorithm from the 5 DOF I wrote

about in my memo of March 15th tO 400 DOF. The problem is that there are 1812 variables in the theta

vector, so for each iteration in the identification process the state-space matrices A, B, C, and D have to

be reformulated from the perturbed theta vector and M, C and K 1812 times. Naturally, I would like

this to be a quick process. I have improved the time and memory requirements substantially by

converting all processes (modeling, simulation, and. flaw detection) to work with sparse matrices, but

there is one thing I am having a lot of trouble with (and I’m not sure if it’s a real problem or if I’ve just

looked at it so long I’ve lost sight of an obvious solution). Thus this memo.

The problem is the transformation of the state space matrices from continuous to discrete space.

Specifically, when transforming F and G to A and B we use (from Franklin, Powell, and Workman, p.

A=eFT

T
B = .[ertdt ¯ G

0

53)

The matrix A may be approximated by a Taylor series expansion:

F2T 2 F3T3

+ +...
2! 3!

which can also be written as

Universi~, of California

[L_~Lawrence Livermore
National Laboratory

A =err =I+FT+

C.1

113

A = I + FTtIJ

with

FT F2Tz
tlJ= I+ +~+...

2! 3!

The B integral above may be integrated term by term to give

k~0FkTk~TG = q-q"G C.2B= = (k+l)!

To be more computationally efficient, FP&W suggest evaluating W using the form

which allows an iterative approach with better numerical properties. I used it in the 5 DOF case, using

N -- 15, and the calculation was quite rapid and accurate. However, it falters in the 400 DOF case, in

which it needs up to 200 terms to have accuracy to within a few percent. This is due to the large values

of F, in which the 2-norm is 2.9 x 10I°. An obscure reference is cited (Kallstrom 1973) on how

approximate the exponential for large FT, but it has not yet been located.

At this time I consulted a reference suggested by Jim, "Nineteen dubious ways to compute the

exponential of a matrix" by Moler and Van" Loan (1978). Most of the more accurate methods require the

eigenvalues of A, ar~l that is a very expensive (-45 seconds) calculation for this problem, so they were

discarded. The methods that drew my interest the most were Method 3 (scaling and squaring) and

Method 19 (splitting).

Method 3 involves the use of the property of the exponential:

eA = (cA/m)m

The idea is to choose a power of two for m such that eA/m is easily calculated using Taylor or Pade

approximations and then to reform eA by repeated squaring. The commonly used criterion for choosing

m is to make it the smallest power of two so that

IIAI <_1
m

University of Califomia
Lawrence Livermore
National Laboratory

where A is the 2-norm

Once e’~’r is calculated, B can be calculated by solving for ~ in Equation C. 1 and substituting it into

Equation C.2:

A-I

This can lead to trouble if F is ill-conditioned, where the condition is I FI ¯ F-I . If the condition is

large, then F is almost singular and is ill-conditioned.

114

To test the accuracy and speed of this algorithm, I ran several experiments using identity matrices A that

were multiplied by different positive constants C to yield a variety of sizes and 2-norms. I compared the

accuracy and time required for the Matlab algorithm EXPM.M and the sparse implementation of

Method 3 using N = 5 (only the first five terms of the Fourier approximation were used). The value

returned by EXPM.M was defined as the "real" answer for the error calculation. Table I lists the

matrices and their average error:

A size

lxi

lxl

C

100

m

0

7

Tsparse

0

0.01

Texpm

0

0

TB

0

0

error

0.06

2.06

1 x 1 500 9 0 0 0 23.6

1 x 1 1000 10 N/A N/A N/A Inf

5 x 5 1 2 0 0 0 0.00011

5 x 5 100 8 0.01 0 0 0.09

5OO 11 05x5 0.01 0 0.05

100xl00 1 4 0.01 0.13 0.01 0

100xl00 100 10 0.03 0.23 0 1.1e-4

University of California

[L_~Lawrence Livermore
National Laboratory

115

500 13

0.11

0.25

31.93

0

0.01

5.6e-5

500x500 I00 12 0.15 54.53 0 0

500x500 500 14 0.16 62.07 0 1.8e-6

500x500" 1 6 0.65 38.21 1.40 3. le-5

500x500" 100 12 0.82 61.7 1.30 5.0e-4

500 70.04500x500" 0.90 1.3014 5.0e-4

where A size is the size of A, C is the constant that multiplies A, m is the factor of two used, Tsparse is the

time for the sparse method, Texp is the time for Matlab’s built-in matrix exponential, T~ is the time to

calculate B using A, and % diff is the relative percent difference (which is reported as zero if below 1

106) between the results of the scale and square sparse algorithm and expm(CA). All times are

seconds. A result of NIA means the number was too large for Matlab to measure. All matrices were

simple identity matrices except for the last three marked with an *, which included four off-diagonals to

simulate the sparsity of the real F and G matrices. For these experiments, G was taken to be equal to F.

As an example, the sixth experiment used a 5 x 5 identity matrix multiplied by 100. The sparse Method

3 took 8 squarings to reach the desired accuracy, and each process took 10 milliseconds or less to

complete. The relative error between the two algorithms was 0.09%.

It is clear that the sparse algorithm is much faster for the larger matrices and quite accurate, except for

the scalar multiple of 500. This is to be expected because 5 components of the Taylor series will not be

enough for such large values of A. For the large matrices, though, accuracy and speed are quite

acceptable. However, there is a problem that is not evident from these simple experiments.

The problem lies in the squaring loop. In the process of squaring, roundoff errors accumulate and

gradually fill the sparse matrices with very tiny numbers, slowing performance substantially. To remedy

this, at each iteration in the squaring process A is flushed of all values below a threshold, which is

determined by taking the average of the absolute value of the largest 3n values, where n is the model

order and three is used to capture the main diagonal and two off-diagonals. This process works well for

the example above, in which the test matrices’ components are all of the same order. However~ in our

University of Cafifomia

.LL, ~ Lawrence LivermoreNational Laboratory

problem F has members that vary on the order of 106. This makes the calculation of the flushing

threshold quite difficult. Too high a threshold and the smaller values are removed, leading to an

inaccurate A and B, and too low a threshold leads in many spurious nonzero values, slowing the

transformation considerably. To attempt to sidestep this difficulty we examine the next method.

116

Method 19 is called the splitting technique. Here, e~’ is approximated by splitting A into B + C and

using the approximation ¯ ~

eA =_ (eB/m. eC/m m

in which the equality is true only ifB and C commute, that is [B,C]= BC-CB = 0. The advantages of

this algorithm are that if the scale of B and C vary substantially, each can be calculated separately using

Method 3 with different thresholds. The factor rn can be determined using the inequality

lie A- (eB/m. e c/m)m I[< [[[B, C2m] [e~BHc~"

Since our F consists of two distinctly scaled matrices, we could split it and try to compute the individual

exponentials:

:IF]= K C =
" M M 0N 0N]

To estimate the error, we calculate [B,C]:

[B,C]= M M - 0N_ =
ON ON ON

Now the norms of [B,C] and B and C may be calculated. The norm of [B,C] is 2.87 x 103, and the

norms of B and C are 2.24 and 1.65 x 103, respectively. Neglecting the norm of B and.assuming a

generous error norm of 1000, m would still have to be very large due to the large norm of C. In fact, tn

would have to be greater than 1 x 103°0, not too useful for our (or anybody else’s) calculations. It might

be possible to factorize F into better matrices, but we would still have the problems of scale associated

with the problem that we experienced earlier. Thus this method will not be very useful for our

calculations.

University of California

[~ Lawrence Livermore
National Laboratory

117

So that is where we stand. The scaling and squaring method works well but the threshold factor can

cause the answer to be incorrect or take forever to calculate. The splitting method will not work because

the norm of C is too high. So what are our options?

Scaling is not an option. Right now, the units of M are in lb*feet*seconds2/inch and K is in

lb*feet/inch. If we change these to units of 1000 lb and 1000 feet, then the base ~unit of M mould change

from 5045 to 5.045 x 10.3 and the base of K would change from 1.62 x 106 to 1.62. Thus our scaling

problem is seemingly lessened by a factor of 103. However, the matrix of interest (F) is constructed

from the ratio of K to M, which is unaffected by scaling. Thus, scaling is not helpful.

At this point I am simply going to try and find a threshold that is both reasonably accurate and fast. If

either of you have any suggestions or references, please send them to me when you get a chance.

Thanks !

Greg

References:

Franklin, G.F, Powell, J.D., Workman, M.L. (1990). Digital control of dynamic systems, Addison-

Wesley, Reading MA. ISBN 0-201-11938-2.

Kallstrom, C. (1973). "Computing EXP(A) and the integral of EXP(As)ds", Report 7309, Lurid Institute

of Technology, Division of Automatic Control, March 1973. Not yet located.

Moler, C. and Van Loan, C. (1978). "Nineteen dubious ways to calculate the exponential of a matrix",

SIAM Review, Vol. 20 (No. 4), October 1978, p.801-836.

University of Ca/ifomia

~.~Lawrence Livermore
National Laboratory

118

Interdepartmental letterhead
Mail Station: L-271

33088Ext:

To: Greg Clark
Jim Candy
Dave McCallen
Matt Hoehler

From: Greg Bumett ~

CC:

Re: 50 and 400 DOF progress

DRAFT

7/7/99

Hello everyone,

I wanted to write a memo on the progress and pain of simulating and identifying the 400 DOF system.

At present, I am still having numerical problems. I believe it is probably due to the observability (or lack

thereof) of the system.

Background:

The parameter identification method used for the 400 DOF problem is a modified version of PEM,

written by Lennart Ljung. It utilizes several subroutines, and utilizes the damped Guass-Newton

algorithm described in my draft report to Greg. The program, as written, does not work on sparse

matrices at all. It utilizes several built-in functions (such as EIG) that crash when given sparse matrices.

Since our matrices are by nature quite large (from 400 by 400 to 28800 by 215 for the 400 DOF

problem), it was necessary to rewrite PEM and its associated subroutines to operate sparsely. At the

same time, the 4 major subroutines were merged together for greater speed and efficien.cy. The result

was PEM_SPARSE. So up to this point the progress has been:

I. Rewrite PEM, PEMSS, SESS, GNSS, MF2TH, LTITR and C2D to accept sparse matrices.

2. Incorporate PEM, PEMSS, SESS, and GNSS into a single new program, PEM_SPARSE.

3. Test on the 5 DOF system.

University of California
Lawrence Livermore
National Laboratory

119

At this point (late April) the algorithm functioned well for 5 DOF. It was a little slower than PEM since

the 5 DOF system is not very sparse, but it gives the same answers. I looked into compiling the major

subroutines (those that have to run many times per iteration, LTITR_SPARSE and C2DGB), but the

Matlab compiler will not compile a routine that utilizes sparse matrices. Thus we can either use full

matrices with compiled functions and take a huge memory hit (it balloons into many hundreds of MB)

or use uncompiled sparse functions, which only require about 10 MB of memo~ but are slow. I have

recently located a third-party compiler which claims to compile sparse functions, but have not yet had a

chance to try it.

I now began to test the algorithm with 400 DOF. It was necessary to write a program that would

assemble the discrete F, G, and H matrices needed for simulation and identification given the unknowns

of the system. At this point we decided to use all of the nonzero diagonal and upper triangle values in

the K matrix as our unknowns (all 1812 of them). By determining which components of the K matrix

were incorrect, we could determine which elements might have been damaged. This process must be

done many times per iteration, and time was saved by only updating the damping constants (the first and

fourth eigenvalues of M-~K every hundredth iteration. This will substantially speed up the process

without sacrificing too much accuracy.

4. Write TH400DOF, which assembles the M, C, and K matrices given the original values of K and the

(proposed) changes to it.

The 400 DOF algorithm was very slow at first, so I spent a good deal of time optimizing

LT1TR_SPARSE and C2DGB. LT1TR is basically a linear time-invariant kernel propagator, which

calculates the response of x[n + 1] = Ax[n]+ Bu[n] given A, B, u, and x[0]. It is used extensively to

calculate the innovations and gradient direction. C2DGB is the sparse variant of C2D, which samples

the continuous system described by A, B, and C and returns the discrete matrices F, G, and H. It is

necessary to convert the matrices in order to compare the simulated outputs with the actual sampled

outputs of the system. The algorithm for this is contained in my memo of 6/2/99, entitled Continuous to

discrete transformations. I had some difficulty getting the algorithm to behave, but with a good amount

University of California

[L_L~Lawrence Livermore
National Laboratory

" 120

of help from Jim and Greg I have gotten it to operate quite smoothly. Although the poor scaling slows

down the calculation, it now seems to be quite accurate and stable.

5. Optimize LT .ITR_SPARSE and C2DGB for speed and poorly scaled matrices.

Just before I left on vacation in the middle of June, we decided to change the way the 400 DOF system,

matrices are constructed. Instead of using the 1812 members of K, we decided to use~the E values in

each of the 215 elements. Thus any differences in the modeled and identified matrices could be traced

to a single element. This decreases the size of the algorithmic matrices substantially and speeds

calculations to where a single iteration takes only a few hours, not on the order of a day. I wrote

TH400DOF_SMALL_K to assemble the matrices given the values of E for each element, and assumed

that each floor node could be measured. This gives 20 measurements of the 400 equations.

6. Rewrite TH400DOF so that the individual beam and floor E are the variables of the system.

7. Assume each floor node is measured.

As it stands now, the problem I am having is that the ~F matrix is singular. To review, the direction of

the iterative improvement g is given by

E

As my W is singular, the algorithm fails. I believe that W is singular because the problem, a’s it is set up,

is not observable. I would like to try a smaller system with only a single discretized column for a total

of 50 DOF. Matt has given me the matrices; I just need to build a TH50DOF_SMALL_K so that I can

do the identification. I could even try it with every node measured, just to see if observability is a

problem. I don’t think this is practical with the 400 DOF system as it would no longer be sparse and

¯ would take too long to do.

Update 7/15/99

University of California

Lawrence Livermore
National Laboratory

121

I have received and implemented pem_sparse for both the 10 and 50 DOF systems. The results for the

10 DOF system are excellent: with 3-6 iterations, it is accurate to within a few percent even for very

large (up to a 90% change tested) perturbations of the E1 values. In order to get the algorithm to work

wher~ every DOF is not observed, I had to "collapse" certain matrices (such as the innovations) so that

other matrices (such as the gradient) wouldn’t become singular. By collapsing key matrices, I could

keep the calculations regular and speed up the calculations due to the smaller matrix size..

In addition to this, I found it necessary to restrict the parameters used in calculating the Gauss-Newton

search direction to ensure stability in the criterion calculation. The algorithm right now sometimes

calculates G-N directions g that have members 100 times larger than the parameters themselves. This

can cause the EI values to become negative, which is nonphysical and results in errors..I restrict the new

parameters calculated by

newpars = oldpars + k. g

to values between oldpars / 100 (severe damage) and 2 * oldpars (model mismatch). This makes

algorithm much more stable. In the future it might be useful to limit the size of the members of g as

well.

The 50 DOF, as of 2:07 this afternoon, is still not converging to the correct answer using the ME

simulator (ours is returning values for y that are -1000 times too large). Right now we are perturbing

the EI parameters EI(6).’EI(10) by V2 of their original value. Chad is preparing a second series, which

will have all translational nodes observed, and I will work on that later today to see if it’s an

observability problem.

University of California
Lawrence Livermore
National Laboratory

122

Interdepartmental letterhead
Mail Station: L-271
Ext: 33088

To: Dave McCallen
Greg Clark
Larry Ng
Chad Noble
Todd Gable

From: Greg Burnett

CC:

Re: The State of the Art in Vibration-Based Structural Damage Identification

9/17/99

Hello everyone,

I wanted to write a quick.memo and summarize my thoughts on the tutorial that Chad and I attended

earlier this week. Here are some quick impressions:

1) The presenters are well versed in the state of the art of vibrational analysis. They were quite
knowledgeable and presented the material in an organized, efficient manner. This tutorial focused
on damage identification, but they also do courses on FEM update routines. I feel it would be
worthwhile to invite them here for a short course on model updating so we can get a feel for the.
current state of the art in this area.

2) The Kalman Filter-based residual whiteness test conceived by Jim and Greg is as good or better than
anything currently being used for damage detection. The most advanced system they offered at the
tutorial was an LPC-based residual whiteness analysis. The Kalman Filter approach is more robust,
noise-tolerant, and accurate. Therefore our damage detection algorithm is among the best out there.
It needs to be tested on real data, which I will accomplish soon.

3) There is quite a bit of literature on model update algorithms, but most of them seem to be
concentrated on modal analysis methods. I am going to research the references they recommend and

see if there is anything useful for us there.

4) We should test the real structures using a coherence test to see how nonlinear the structure is. If it is
. significantly nonlinear, we may have trouble fitting the model to the data.

University of California

~ Lawrence Livermore
National Laboratory

123

5)

6)

7)

We could use the Principle Component Method on the recorded data to determine what nodes are
more important than others. This would also allow us to redistribute sensors on as structure after we

have taken data so that more important locations are covered in more detail.

A two step process is commonly used to identify damage in large structures that would otherwise be

computationally perverse. The first identifies the general area of damage and the second
concentrates on the general area with a more detailed algorithm to more closely identify the damage.

Genetic algorithms might possibly be useful for large DOF systems in which many local minima are
present. They have a slightly tarnished reputation, though, as they have been misused in the past.

GEMS relevance

8) There are techniques that can be used to determine confidence levels on calculated transfer

functions. We could use those when the transfer functions are used as a metric in speaker
identification.

9) The "bootstrap" procedure could be used by Todd in his classification process to calculate the
properties of his template.

10)The Fischer discriminant can be very useful in separating data that are caused by different
underlying processes. It would be very useful for Todd when he is classifying speakers.

That’s about it for now. If any of you have any comments or would like more details, please let me
know.

Greg

University of California

Lawrence Livermore
National Laboratory

124

Interdepartmental letterhead
MaiI Station: L-271
Ext: 33088

To: Greg Clark
Larry Ng
Dave McCallen
Chad Noble

From: Greg Burnett

CC:

Re: The 5 DOF NTS model using the damped Gauss-Newton algorithm

10/18/99

Hello everyone,

I wanted to take the time to write out the progress of the 5 DOF NTS structure. I have been trying

several different approaches, and with Larry’s help have made some significant progress. However, I

have not been able to improve the model using the data we captured at the NTS. Hopefully. this memo

will explain why and how we might go about solving the problem.

Review of the algorithm

This is a summary of the damped G-N algorithm which I explained in my draft paper "System

Identification Algorithm". The first step is calculating the initial criterion, against which the

minimization will be done. For this we will need the innovation.

First, i (the predicted state vector) is calculated "

~[n + 1] = A. i[n] + B. u[n] +K. e[n]

~,[n] = C" ~[n]

where e[n] is the innovation which can be written out explicitly as

e[n] = y[n]- C[0]. R[n].

You may recognize this equation as the Kalman filter algorithm, with the exception that it assumes K is

a constant. K, the Kalman gain, can be calculated by

K = pCTR~t

University of California

[L_~Lawrence Livermore
National Laboratory

125

where P is the state covariance matrix, C is defined above, and Rv is the measurement noise covariance

matrix (all assumed constant). In our case, C is constant, but P and R, may not be. Thus this

implementation is not a normal Kalman filter, but a simplified one. We will discuss these later in this

memo.

To do the actual calculation, we can write ~ as

~=ltitr A-KC, [K B], , x0

where the n (time) and 0 arguments have been suppressed for clarity and LTITR.M is a linear time-

invariant time response kernel calculator that calculates the time response of the system

x[n+l]= F. x[n]+G.u[n]

with our system represented by

G=[K B], and u=[~].F=A-KC,

In this case, y[n] is the measurement at time n and ~,[n] is the predicted value of y at time n. In the case

where not every translational state is measured, we have been using simulated values as the

measurements. Otherwise, the algorithm as will not function, as it depends on the innovations to

calculate the direction of the minimization gradient. It may be better in the future to interpolate between

sensors, but this will only be useful for lower frequency modes.

Unfortunately, this method (using simulated values as measurements.when a measurement is not

available) can result in large errors, especially for large perturbations. When we use this method, it

forces the algorithm away from the correct answer by repeatedly giving it incorrect measurement values

with which to update its state equation. Depending on the value of K (larger K means the measurements

are accurate), this can devastate the state estimation. It would be better in this case (for unmeasured

states) to simply assign a value of zero to K, indicating that the measurement is completely unreliable.

Now that ~ has been calculated, we may calculate the innovations:

e[n] = y[n]- C[0]. ~[n]

University of California

[L_~La .w. rence Livermore
Nat, onal Laboratory

The least-squares minimization criterion V is then determined by

V - trace(eT" e)
length(e)

With the criterion for minimization defined, we proceed to the minimization loop.

126

Minimization loop

In the minimization loop, two major calculations occur: First, the innovation e for the;current value of 0

is calculated just like the calculation above. Then the gradient ~F is calculated using a finite-difference

approximation to the Jacobian. This involves calculating the derivative of the predictor ~, with respect

to minimization parameters 0. Finally the direction of the correction is determined by solving

q~g=E

where E has been used for the innovation matrix. The parameters are then modified by a linear multiple

of the direction g and the criterion calculated:

0 = 00 + ~gT

The loop continues until a lower value of the criterion cannot be found.

The calculation of E takes place e~actly as the initial calculation for the beginning value of the criterion,

the only difference being tl~at after the first loop the parameters have been modified. The calculation of
:.

W, on the other hand, is more complex and has to be built up one member of 0 at a time.

Changes in the algorithmrequired by the NTS 5 DOF model

The NTS 5 DOF model is an asymmetric 5 story building constructed by Dave and Co. that replicates

many of the modal features found in the NTS data. It is a one-dimensional model that does not have

rotational DOF but does incorporate shear. The challenge is to take this model, and using the data

recorded at NTS, modify it so that the modal frequencies are more in line with those recorded from the

actual structure.

Working with the data

In the algorithm above, the states are assumed to be the position and velocity of each node. This allows

a convenient description of the problem in state-space. Our data, however,is measured in acceleration.

University of California

[~.~Lawrence Livermore
National Laboratory

Originally (and somewhat naively) it was believed that we could simply filter the data with a I
Eq. 3

highpass filter and then. use a perfect integrator twice to convert to displacement, as displacement is used

as the state of choice during our 5 and 50 DOF simulation trials. However, there is some noise in the

signals, which for the moment we will consider white. Larry pointed out that if you integrate a noise

signal with a frequency spectrum of 1, you get a noise spectrum of l~s. Do it again and now thenoise

spectrum is X2, indicating that the noise has been significantly "reddened", th~ noise at 10w

frequencies has been increased. Depending on the noise level, it is possible to Significantly distort the

calculated displacement signal. Also, our modeling assumes white noise and will not operate as

efficiently for reddened noise. Thus, we must either find another way to convert the acceleration data to

position or change the G-N algorithm to work with acceleration, not displacement. We chose the latter.

127

Using acceleration instead of displacement

The first step in changing the algorithm to work with acceleration was to change the way the innovations

are calculated. For this problem, modeled as a series of simple harmonic oscillators, the equations of

motion are

M~)+C~+ Ky =u

so that acceleration is related to velocity and displacement by

u Cs ~,___~_y
~=~- M

where M, Cs, and Ks are the system mass, damping and stiffness matrices respectively. This means that

the innovation is now represented by

e[n] = Y[n]-[u-~]- C’ Y[’n]- K’M --~- y[n]

since the measurement y[n] is now acceleration. The criterion is unchanged.

However, this is not the only change. Indeed, the calculation of ~ has changed significantly due to the

redefinition of the innovation. For displacement, from above:

~[n + 1] = A. ~:[n] + B. u[n] +K.

~,[n] = C. :~[n]

University of California

[~.~Lawrence Livermore
National Laboratory

128

and for acceleration:

~[n + 1] = A. ~[n]+ B. u[n]+K. (y[n]-

u C~ ~,___~_y =-[M-’K~~[n] = ~-- M

"u[n]C, K~

’x~[n]---~-xd[n]M M

M-tCs]. ~[n] + M4 ¯ u[n]

where y[n] is now an acceleration measurement and Xd[n] are the displacement states and Xv[n] are now

the velocity states. Defining ~

Xd = C~x

Xv = CvX

where Cd is the same as our old displacement C, we can write the above as

or

KCsC" t- ¯ ~[n] + B - . u[n] + K. y[n]~[n+l]= A+~
M

~,[n]----[M-’K, M-’C~].~[n] + M-’ .urn]

~[n + 1] = [A + KDC,C, + KDK,Ca]. ~[n] + [B- KD]. u[n]+ K. ytn]

~,[n]---[DKs DC,].~[n] + D.u[n]

so that we may now write

~ = ltit~A + KDC,C, + KDK,Cd,

with D = M4.

Now that we have ~,, we can proceed to the calculation of the G-N gradient, which is

v(nlO)= d(~(nl0))=(-[DK, DCs]vx(nIO)+Dwu)+dO
(-[DK; +D’K, DC’, +D’C,].~,tn] + D’.utn])

where ~x and Vu are the derivatives of ~, and u with respect to 0 and X’ denotes the derivative of the

matrix X with respect to 0. Since the input u is obviously not dependent on 0 that term can safely be

ignored. What is left now is to calculate Vx, the derivative of ~ (Eq. 3).

University of Cafifomia

[L_~Lawrence Livermore
National Laboratory

129

v~[n + 1]= [A + KDC,C~ + KDK,Cd]. ~gx [n]...

+[A’+ K’DC,Cv -~ KD’C,C,. + KDC~C,. + K’DK.~Cd + KD’K,Ce + KDK~Ce]. ~[n]...

+ [B’- K’D - KD’]. u[n] + K’. y[n]

This can be calculated using LTITR:

A + KDC,Cv + KDK,Cd,
A’+ K’DC~C,, + KD’C,C,~ + KDC~C,~ + K’DKsC,, + KD’K,Cd +KDK:Cd.

...K’ B’- K’D- KD’,
V~ = ltit~ ~

After all these additions are made, the algorithm is almost ready to ran.

The search for K

As mentioned previously, K can be calculated by

K = pCTR~t

where P is the state covariance matrix, C is defined above, and Rv is the measurement noise covariance

matrix. However, this assumes P is constant, kind of a "half-assed" Kalman filter implementation. The

Kalman filter algorithm normally does not assume P is constant, and calculates a new, corrected P at

each time step:

P= (I-KC~p,

where I is the identity matrix and Pp is the predicted measurement for the time step. Thus K can be

expressed as:

K = PpC" (CPpCr + R,)’-’

However, we are still faced with the problem of what to use for Pp and R,,. The equation above is used

at each time step in a Kalman filter algorithm, and LTITR.M does not do that. It is only an LTI kernel

propagator, and assumes the K it is given is constant.

So really the only way to effectively implement the Kalman filter is to overhaul PEM_SPARSE.M so

that is uses a full-fledged Kalman filter algorithm. This would emulate an optimal filter approach and

almost certainly cause the accuracy to improve.

University of California
Lawrence Livermore
National Laboratory

130

Sensitivity of the NTS model to changes in E

I have observed, from some of the earlier results, that a relatively large change in E as dictated by

PEM_SPARSE is not reflected in the mode frequencies of the NTS structure. For example, one of my

tests returned the following values:

Old E values

10.6

10.6

Calculated E values

21.2

Old mode freqs

5.21

Calc mode freqs

5.20

14.6 13.2 13.2

10.6 21.2 21.4 21.2

10.6 6.1 26.9 26.8

10.6 0.23 N/A N/A

Table 1. Original and calculated E values along with their respective mode frequencies

It is clear that very large changes in.E did not change the mode frequencies in any significant fashion.

For the NTS structure, we are only varying values in the local k matrix that are proportional to El, we

are not varying the values of EA. For the other structures, we do the same thing and the sensitivity is

still quite high. The only difference is that shear is included in the NTS model and not in any of the

others. Perhaps this is causing the problem? It is important that we discover what is causing the

probler~ soon, as even a perfect search algorithm will not converge to the correct answer if the structure

in insensitive to the parameters that are being manipulated.

Bad data on sensor 12?

I have noticed that the data from sensor 12 (fourth floor, +x direction), while of the correct magnitude,

seems to be lacking in high frequency components. In Figure 1 the PSD of sensor 12 is compared with

sensors 3, 6, 9 and 15, which were oriented the same way as sensor 12. It is clear that there is not as

many high frequencies in sensor 4’s spectrum.

University of Ca/ifornia
Lawrence Livermore
National Laboratory

131

Psds for sensors 3,6,9,12,15 (floors 1-5) for strucow5, mat

-50

~o,.50

-\-;-~.- -~ ~ _ .

0 10 20 30 40 50 60 70 80
0 /

/. . . ~- ,,_

0 10 20 30 40 50 60 70 80
0

0 10 ~ 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80
Fmquency(Hz)

Figure 1. Power spectral densities of sensors 3, 6, 9, 12, and 15. Note the lack of power above 35 HZ for sensor 12.

University of Cafifomia

~L~Lawrence Livermore
National Laboratory

132

Conclusions and suggestions for improvements:

The simple algorithm PEM from Matlab has been substantially changed in order to operate on the NTS

structure. The acceleration is used as the input to the system so that no transformation to displacement

is required. However, the algorithm can be improved by the following:

1. Implement the full Kalman filter algorithm for state estimation ~

a. Use K = 0 when no measurements available

2. Determine why the sensitivity of the structure with respect to EI is so low and fix it!

In addition, we may have to limit ourselves to analyzing data below about 35 Hz in order to compensate

for sensor 12’s inadequacies. It is not clear at this time if any of sensor 12’s data is useful, we may have

to try and update the model without it. As it is only one sensor, the loss should not affect the accuracy

more than a few percent.

University of California

[~_~Lawrence Livermore
National Laboratory

Interdepartmental letterhead
Mail Station: L-271
Ext: 33088

To; Greg Clark
Dave McCallen
Chad Noble
Larry Ng

From: Greg Burnett ~

CC:

Re: 10 and 50 DOF results with reduced measurements

10/18/99

133

Hello everyone,

I wanted to present what we have so far regarding the 10 and 50 DOF results with reduced translational

measurements. We never measure the rotational states~ so full measurement would imply 5 and 25

measurements respectively. ..

The algorithm used for these measurements is my PEM_SPARSE, which uses Matlab’s PEM as a basis.

It uses a damped Gauss-Newton search routine (see my earlier draft report, "system identificatibn

algo.doc") to identify the parameters. Its strong points are robustness and guaranteed convergence to

minimum (but NOT necessarily the global minimum, more on that later), but its weak points are slow

convergence near the minimum and the possibility of convergence to the global minima (this possibility

increases substantially as the number of DOF increases). It is also quite sensitive to the Kalman gain,

and requires transforming our continuous time model to a discrete one, an operation rife with peril.

However, the last one is not really its fault, as all iterative search algorithms are forced to operate in the

discrete domain, so its something we will have to learn to deal with.

For this memo, the number of states that are measured is varied and the performance of the parameter

identification algorithm is determined by the mean error across states for a given perturbation. Since

PEM requires all states to be measured in order to function, if the states are not measured then the

outputs estimated by the ORIGINAL FE model are substituted. The procedure is outlined in Figure 1.

University of California

~ Lawrence Livermore
National Laboratory

134

Illput

FE model

Actual Stnlcture

PEM model

Figure I. Flow of innovation calculation when FE model output is used in place of measured data.

illllOVtlliOll

We might also want to try interpolating the sen~or measurements between nodes. This would only work

for frequencies low enough so that the displacement betveeen measured nodes could be interpolated with

sufficient accuracy.

Unfortunately, this method (using simulated values as measurements when a measurement is not

available) can result in large errors, especially for large perturbations. When we use this method, it

forces the algorithm away from the correct answer by repeatedly giving it incorrect measurement values

with which to update its state equation. A better way is to change the way the algorithm operates. We

will address this later in the memo.

At this point it is instructive to go over in detail the difference between nodes, elements, and states. The

nodes are the points in the building at which two or more elements connect. The nodes are where we

place the sensors and each node may have one or more degrees of freedom. In the 10 DOF case, each

University of California

[L_L~Lawrence Livermore
National Laboratory

- 135

node has two degrees of freedom: an x-translation and a z-rotation. Each DOF is represented by a state,

or equation of motion. It is the states (equations) in state-space that we count as our measurements.

When we say node 6 was measured, what we really mean is state 6 was measured. Since there is a one-

to-one correspondence at this point, it is convenient to use either "nodes" or "states", even though they

may not match up exactly. For example, node I of the 10 DOF model is fixed, and therefore has no

state or equation associated with it. State 1 is really associated with node 2, but to avoid confusion we in

essence rename our nodes starting with node 0. Thereafter node n will be associ~ated with state n. For

our simple models the nodes are considered point masses.

The elements are the physical structures bonding the nodes together. They are the ones with the

physical properties such as length, width, and elasticity. In the simple 10 and 50 DOF models, each

element connects two nodes. In PEM_SPARSE, the values of EI for each element are used as the

variables of the system. Changing the properties of one element actually affects two nodes. Conversely,

not measuring one nodes affects the calculation of two element values. The way my numbering system

is set up, by not measurin~ node n you will affect the Calculation of elements n and n + 1. This is

important to keep in mind as we go through the following data.

10 DOF

The details of the algorithm are (these are not necessary to understand, I place them here to remind

myself of what I did):

k = [7/8, 3/4, 9/10, 1/3, 2/3] * ko;

Nb g restraints

Pars0/100 < pars < 2* pars0

Kalman gain = eye(ra,r)

No noise, determinant criterion

all members of k. varied, some significantly

no restrictions on search vector magnitude

parameters Uheta vector) restrained

K~dman gain is the identity matrix (default, not optimal)

Results:

With all states measured, the mean error across states for the parameter identification was 1.2 x 109%,

essentially zero. This means the identification algorithm is dead-on, even for the large perturbations

University of California

[~ La.w.rence Livermore
Natmnal Laboratory

136

used. As this perturbation is quite large, we can be

confident that for "normal" perturbations, which should

be quite small, on the order of 10%, we should be able

to get close to the correct answer. The accuracy of the

results will depend on the noise level.

If all the states are not measured, the results are

paraphrased in Figure 2. Keep in mind that the

accuracy of the G-N algorithm can vary, sometimes

substantially, and these results are only two runs

averaged together. Nonetheless they can give an idea

of the performance versus measurement location. The

Cross-hatched squares denote a measured state, the open

squares an unmeasured state. The results are not too

surprising - since the most poorly modeled states are 4

and .5, if they are both not measured the errors are

usually high: 32, 47, 43, 179% errors. However, there

was one experiment where states 3, 4, and 5 were not

measured and the mean error was only 4.7%. Thins is

better than when only states 4 and 5 were not measured

- 32%! This shows that for the G-N algorithm,

sometimes measurements can actually hurt accuracy,

depending on the model and the size of the mismatches.

Another large error was when states 1,2, and 4 were not

measured (89%). When the algorithm was run again

with state 3 not measured, the mean error improved to I ! I~ I

11%. Again, measurement of state 3 can be detrimental to performance. It could be because of the large

change in k between the third and fourth floors, or just due to the inconsistencies of the G-N algorithm.

University of Cafifomia

[L_~Lawrence Livermore
National Laboratory

137

Overall, the results show that good to excellent (error rates from 0.02% to 0.67%) results for three

measurements with the exception of states 4 and 5 unmeasured (32%, expected due to the large changes

in k for elements 4 and 5). For two measurements there was much poorer performance (0.28, 4.69, 18.3,

26.8, 80.5, and 88.8% error) and for a single measurement the best we could do was 6.6% (state

measured) and the worst was 179% (state 3 measured). This seems to indicate that it is possible

model the structure relatively well with only one measurement if it is taken in the right place. In this

case, state 4 was very poorly modeled (actual value only 1/3 of modeled value) ~nd so a measurement

there helped to converge the solution. On the other hand, state 3 was modeled the best (actual value

90% of modeled value) and so a measurement there was not always helpful - in some cases, it was

actually detrimental to performance.

PCA

It has also been suggested that we may be able to look to principal component analysis to see if we can

determine where we should place the sensors. Principal component analysis takes the state covariance

matrix P (which we calculate in SIM_DISCRETE.M, or which we can determine from the calculated

displacements vs. time) and calculates the eigenvectors (principal components) and eigenvalues. This

simply a transformation of the states to a basis where they are orthogonal and have the maximum

autocorrelation and zero cross-correlation. When the transformation is complete, the principal

components with negligible eigenvalues are discarded and the system can be described with the

remaining principal components. If we examine the principal components with the largest eigenvalues,

we can get .an idea of where we should place our sensors.

For the 10 DOF system, the first two principal components are shown in Figure 3. The largest principal

component indicates that states 1 and 5 may be the most important, and when we check Figure 3 we see

that for states 1 and 5 measured, the error was indeed small, only 0.28%. If we take the first two

principal components, it would indicate that the most important states are 1, 5, 2,’and 4, which are the

most poorly modeled. This would seem to indicate that PCA can tell us where to put our sensors with

some accuracy, but I have had trouble with stability and repeatability of the calculation. I also will get

different answers depending on the measurements available and the noise level, so this entire process

must be examined in more detail before it can be implemented.

University of California

[L_~Lawrence Livermore
National Laboratory

138

o 4

Figure 3. The first two principal components of the 10 DOF system with all translational states measured.

50 DOF

In this experiment, the columns of the previous five story building were discretized into five sections

apiece, each with a translational and rotational DOF. The five floor nodes were always measured, and

the location and size of the model mismatch was varied. Unlike the 10 DOF, for 50 DOF

PEM_SPARSE does not converge perfectly to the actual structure in the absence of noise even with

every translational node measured. The best we can usually do (for small changes in k such as 5-10%)

is converge to a mean error on the 25 translational degrees of freedom of about 5%, far worse than the

10 DOF case. We will discuss possible causes of this inaccuracy later.

University of California
Lawrence Livermore
National Laboratory

139

In the following simulations all perturbations to the stiffness elements were to reduce the stiffness (EI)

constant to 90% of its nominal value. In the first set of simulations all nodes are assumed measured, and

is the second only the floors (nodes 5:5:25) are measured. Keep in mind that the things that are

measured are nodes, while the algorithmic parameters are the stiffness values for the elements, which

are attached to other elements at the nodes. The structure is arranged so that element 1 is between nodes

1 and 2. Thus to observe node 5 is to be able to affect elements 5 and 6.

The algorithmic details are:

No g restraints, Kalman gain = 0

Pars0/100 < pars < 2* pars0

No noise, trace criterion

% parameters (theta vector) restrained

Results (all translational nodes measured):

Ideally, the algorithm should converge to the answer with a negligible error since we are not including

any noise in the process. However, the mean error varied from 0.3 % to more than 30%, without any

ob.vious trend to the accuracy. Clearly more work is needed to improve the behavior of the algorithm

when faced with large DOF systems.

Results (only 5 measurements):

The results were not too surprising, in that damage to elements connecting unmeasured nodes was not

readily calculable, with nodes that are farthest from the measured nodes suffering the largest errors. The

unmeasured node damage was reflected in the measured node calculated damage. The results are shown

in Figures 4, 6, and 6. I have observed the following:

The problem of convergence is not simply an observational problem. This is illustrated by the first

and final plots of Figure 6, where we see that even when observed modes ar6 perturbed, the results

are only accurate to within about 7 %. I believe this is a function of the search algorithm, as right

now the update is calculated as

Univers/ty of Ca/ifornia
Lawrence Livermore
National Laboratory

0 =00 +~, g

where 0 is the parameter vector, g is the search direction, and ~, is a constant. If all but one or two of

the parameters are near their optimal value, the value of)~ becomes very small, making convergence

to the correct 0 unlikely. I would propose making ~ a vector as well, thereby tailoring the update

vector so that systems with many degrees of freedom can be minimized.

140

The farther away from the observed nodes, the poore.r the convergence. This is expected, as the

farther we move away from the measured nodes the less information we have abot~t the actual state

of the system. This cannot be avoided in the present incarnation, but the effects of the perturbations

on the unmeasured nodes are noticeable on the measured nodes. For example, in the fourth plot"of

Figure 6, element 8 was reduced to 0.90 of its normal value. The system was unable to reduce

element 8 to its correct value as it was not measured. However, to compensate, the values for

elements 5-6 and 10-11 (the four elements closest to measured nodes, which the algorithm can

change easily) were increased by 4.0, 3.7, 3.7, and 2.7% respectively. These are the largest errors of

elements text to measured nodes in the system, and reflect the perturbation of the element located

between them. This phenomenon occurred each time significant perturbations were made to the

structure between measured nodes. It could be quite useful as a diagnostic tool and for generally

locating model mismatches in large models.

o The convergence is still not good for many perturbations. In Figure 4, the first and second plot, it is

clear that the convergence is only good near nodes 10 and 15. Near the others the error is still large.

This would seem to indicate that the best convergence occurs in the middle of the structure. It also

demonstrates that if many elements are perturbed or poorly modeled, the entire structure will not

converge readily.

Conclusions

The Gauss-Newton algorithm may not be the best one for our purposes. It works well for a small

number of DOF, but is not be sensitive enough to correct localized disturbances in large DOF structures.

In addition, it is too sensitive to small changes in the Kalman gain, exhibiting widely varying

University of California

LL~Lawrence Livermore
National Laboratory

141

characteristics depending on the gain chosen. It also has many variables - among them the Kalman

gain, the limits on the search direction magnitude and parameter values, a robustification parameter, and

the numerical differentiation step size. I do have some ideas for improving its performance (see The 5

DOF NTS model using the damped Gauss-Newton algorithm memo of 10/18/99), but I am beginning to

feel that it may be a good idea to spend some time looking at other methods which easier to work with.

I will spend the next few days reviewing the different techniques available to us, and my next report will

detail what I have found. ;

University of California
Lawrence Livermore
National Laboratory

142

Error in calculation (blue), perturbed E’s (yellow), and observed nodes (green

: .:. "if’
I i imean error = 7.970/~-~

w -10 ~ ,:~ +.,

"= mean error = 3.01
I ’,’ I

15 20 25

I ~mean error = 2.7
20 25

i ~i i "

i!mean error= 2.2I
20 25

, 4 ’ ,~

.=.=--~

I !!mean error = 1,6~
20 25

5 10 15
I ~ I ~++ I

I, 2’, i’i "
!’. 1 j’: I

5 10 15

5 10 15
Parameters

Figure 4. Calculation errors for the 50 DOF problem with 5 observations. The errors are shown in the bar
graph with the yellow bars denoting elements that were perturbed to 90% of their nominal value and blue bars

denoting unperturbed elements. The green lines indicate where the measurements took place.

University of California
Lawrence Livermore
National Laboratory "

143

w

w -I0

~ 10
o

w -I0

Error
I

JR

5

-I0 i~..~

0 ~=, ~

-10
I ’,’ii

6

calculation (blue), perturbed E’s (yellow), and observed nodes (green
I I ,; I ;i I ,~

~i mean error = 1.01 o~

I0 15 20" 25

I ;i! I it , i ~;meanerror=i.32
10 15 ’20 25

i X i ~. i i:mean error= 1.27

10 15 20 25

I ,~, I,, I ~moa~
~rror=

10 15 20 25 ’

I ~~ I ~: I ~ mean error = 2.4
10 16 20 26

Paramelers

Figure 5. Calculation errors for the 50 DOF prob.lem with 5 observations. The errors are shown in the bar
graph with the yellow bars denoting elements that were perturbed to 90% of their nominal value and blue bars

denoting unperturbed elements. The green lines indicate where the measurements.took place.

University of California
Lawrence Livermore
National Laboratory

144

~u -I0 ~--

~ -I0~

o~ 10~1B
~ 0 ----

o~ 10~

~ I0~

Error in calculation (blue), perturbed E’s (yellow),

~:: i:: n error = 0I ’~! I’~ i iJ I ¯

5 10 15 ;20 25

I ~ (,~ ~m@~n error "-,0,9

~mean error = 0.

5 10 15 20 ~

,,.~ mean error = 1.6

5 10 15 20 25

’ __ ’

~ ~ I ~; ~ ~ mean error=O.fig~
5 10 15 20 25

:~,~

,~ ,~ ,;~ ~ =0.9. ’, I ~mean error
5 ~ 10 15 20 25

observed nodes (green x’s)

Parameters

Figure 6. Calculation errors for the 50 DOF problem with 5 observations. The errors are shown in the bar
graph with the yellow bars denoting elements that were perturbed to 90% of their nominal value and blue bars

denoting unperturbed elements. The green lines indicate where the measurements took place.

University of California

~L._~Lawrence Livermore
National Laboratory

145

Interdepartmental letterhead
Mail Station: L-290
Ext: 33088 12/22/99

To: Larry Ng
Dave Harris
Greg Clark
Dave McCallen

From: Greg Burnett

CC:

Re: Augmented state vector continuous-discrete extended Kalman filter system identification
approach

Hello everyone,

This is to present the approach Larry has suggested that we use for system identification. It augments

the state vector (normally just the displacements and velocities of the system) with the stiffness
parameters. This forms a nonlinear system, which is then approximated using an extended Kalman
filter. The system is described in continuous time, and the measurements are assumed to take place

discreetly. Most of this information was taken from Gelb [1].

A nonlinear system can be represented as

~(t) = f(x(t), t)
y[k] = h[x(k), k] + v[k]

(1)
k = 0,1,2... ¯ (2)

with Q(t) and R[k] as the covariance matrices of w(t) and v[k]. We want to calculate the minimum
variance estimate of x(t) as a function of time and measurement data. In this system, the states
propagate in continuous time, and measurements occur at discrete times. Therefore just after a
measurement has been taken, the .states propagate according to the equations above until the next
measurement occurs and the states are adjusted accordingly. In order to represent this process, we use

the following nomenclature:

~ = measurement vector
x[k÷] = state just after measurement

x[k_] = state just before measurement

University of California
Lawrence Livermore
National Laboratory

146

This will also be used for P, the error covariance matrix, which we are trying to minimize.

After each measurement, Equations 1 and 2 are linearized about the measurement and the states
propagated to the next measurement time. A first order approximation is made for (1), and a second
order approximation is made for the state covariance matrix P. This leads to

where

i(t) -- f(i,
[~(t) -- F(i,t)P(t) + P(t)FT (i,t) + Q(t) < t < tk

(3)
; (4)

I
3fi (x, t) [

~’~j x(t) = i:(t)I

So before each measurement point, P[k_] and P[k_] are calculated according to 3 and 4 above. To
update the system following a measurement at time k, the following steps are taken:

1) Calculate the Kalman gain:

2) Update the state equation:

3) Update the state covariance:

K[k] = P[k_] H~T(i[k_]) ¯ [Hk (i[k_])P[k_]H~ (i[k_])+ R[k]~~

i[k+] = ilk_] + K[k]. [y[k]- h(i[k_],k)]

P[k+] = [I - K[k]H~ (ilk_])]-P[k_

where

3hi (x’t)
Hij - ~jj x(t) = ~(t)

The stateg are now propagated according to Equations 3 and 4 to the next measurement point. It ig clear
that the measurement points are not required to be regular nor even to occur at all, but given relatively

noise-free measurements, the more that can be taken, the better the state estimation.

For a 1-D problem the states are defined as

X=[X ~ k]T
with x representing the displacement of the SHO and k the stiffness. The equations describing their
evolution are

~1 = X2
xtx 3 b u

~2 -- X2 q--- (5)m m

so that

University of California

[L_L~Lawrence Livermore
National Laboratory

147

and

0 1 1]

F= -xa/m -b/m -x /m

o o

I’I=[--xa/m -b/m -x,/m]

The only assumptions made in this algorithm are that the system and measurem~at noises are
uncorrelated, the initial state is a Gaussian with the given initial state as the mean and P0 as the variance.
I have implemented this algorithm in Matlab (EKFSHO.M), with only one DOF and using. ODE 15S.M
to do the propagation between measurements. For the noise matrices, I used

P= 1

0 100

R = 0.01

for the initial error, state noise, and measurement noise covariance matrices. The choice of initial P
reflects the relatively large uncertainty in the third gtate, the stiffness parameter. A large value of P(3,3)
tells the algorithm that any error that may occur is most likely due to the stiffness parameter, which is
state 3. The choice of Q assumes that I am quite certain of the development of the displacement,
velocity, and k vectors. This is equivalent to saying that I am perfectly certain that the system evolves as
Equations 3 and 4 specify, and there is no additive white noise to the system evolution. This is a good
estimate for the present example, but may have to be changed for systems where the true model is not

known and whose propagation model is not complete. The larger the value of Q, the longer the
’ algorithm takes to converge on the actual state (if it is too large the algo will not converge). As for R,
value of 0.01 says that I can measure the acceleration without bias to within about 0.1 m/s2, a reasonable

amount.

The results of the algorithm are shown in Figures 1-4. Figures 1 and 2 demonstrate the convergence for

a sine wave input of 1 Hz, and Figures 3 and 4 show the behavior for a white noise input. The simulated
states and measurements are shown in blue, the estimated ones in red. At this point the algorithm is
relatively slow, (about 2 minutes for a thousand data points and 1 DOF, unoptimized) but does manage

University of California

Lawrence Livermore
National Laboratory

- 148

Simulated disp, vel, accel, k (blue) vs. estimated (red)
20

0 0.5 1 1.5 2 2.5 3

5O

0

0 0,5 1 1.5 2 2.5 3’
200

i

-2001 I I I I I
0 0.5 1 1.5 2 2.5 3

6

3’lJ I I I I I
0 0.5 1 1,5 2

time (sec)
2.5 3

Figure 1. Demonstration of convergence of the state vector (top two, fourth graphs) and the
acceleration estimate (third graph) for a sinusoidal input of I Hz with max amplitude of 100. The
actual states and accelerations are shown in blue, the estimates in red. Note the convergence occurs
very quickly, in this case after about 100 measurements. File: EKFSHO.M

to track th~ displacement, velocity, and k states almost perfectly within a few hundred samples with
almost any initial guess for k. It will converge for almost any amplitude and frequency of sine wave
input, although it converges more quickly for larger amplitudes, as H(3) depends directly on the
displacement, and that is the major contributor to K(3).

One caveat is that the system is not constrained to converge to the correct answer, and indeed cannot if
the noise terms Q are too large. The way to check if the system has settled on the correct answer is to
look at K vs. time. If the members of K go to zero (or really to the value of R), the system is settling
the correct answer. If not, K is simply being used as a crutch to match the output with incorrect states.

Another problem is how to treat the input u. For the simulation, the input is discrete, like the
measurements, but in equations (5) above, it is clear that the derivative of x2 depends on u. Thus, when
the ode solver is called, it should be supplied with a continuous u across the entire interval of interest.
We do not have that, nor is there a place in the ode algorithms for it, as they assume undamped systems.

University of California
Lawrence Livermore
National Laboratory

149

So, for now I am interpolating u by a factor of 100, then inside ODEI5S I am using the interpolated

values. This seems to work quite well, as the frequencies of interest are below about 10 Hz, so u should

appear to be continuous to ODE15S.

This algorithm has a lot of promise as it estimates the state vector directly, and operates in the

continuous domain (although the measurements are considered to be discreet, a perfect match for our
situation). Thus no continuous to discrete transformation is necessary. The algorithm is also recursive,

keeping memory requirements down. Being recursive, given "good" data (a high enough signal to
noise ratio) the estimate gets better as data is processed, and the estimation can be terminated after

reaching a certain criterion. There is no gradient to calculate, and no local minima to get caught in. As
long as the model and the measurements are relatively good and the noise estimates on th~ right order,

this algo should converge. However, I am not sure how it will work with systems that are not well

observed.

The next step will be generalizing the algorithm to work with MIMO (multiple input multiple output)
systems. I will begin that when I return from vacation.

University of California

[L_~Lawrence Livermore
National Laboratory

150

0,21

0 0.5

0’5I ~

0

2

Simulated dlsp, vel, accel, k (blue) vs. estimated (red)

:1 1,5 2 2.5 3

0,5 1 1,5 2 2.5 ’3

I I i I I

0.5 1 1.5 2 2,50

61

4-
/

I /

3!~/ I I . I I
0 0.5 1 1.5 2 2.5

time (sec)

Figure 2. Demonstration of convergence of the state vector (top two, fourth graphs) and the
acceleration estimate (third graph) for a sinusoidal input with max amplitude of 1. The actual states
and accelerations are shown in blue, the estimates in red. Note the convergence occurs more slowly
for this lower amplitude as compared to Figure 1.

University of California

[~ Lawrence Livermore
National Laboratory

151

Simulated disp, vel, 8ccel. k (blue) vs. estlmeted (red)

/

0 0.5 1 1.5 2 2.5 3

>, 10

0 0.5 1 1.5 2 2.5 3

500

0 0,5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5 3

Figure 3. Convergence for a white noise input, max displacement of 100. The time of convergence is about the
same as the sinusoidal input with max amplitude of 100.

University of California

Lawrence Livermore
National Laboratory

152

Simulated disp, ~el, accel, k (blue) vs. estimated (red)
0.05 ~ ~ ~ ~ ~

-0.05 t ~ I I ~ ~ ~’--"’"--~’~ I

0 0.5 1 1.5 2 2,5 3

0’2I I ~ I ~ I |

0~,.4, .~.y~.,,...~ ,~...,... i~ ~ ~.-~..x.r" ".~J~. ~. ~ . ,i-.-~’"

,
0 0,5 1 1.5 2 2.5 3

-5 I I I I I

0 0,5 1 1,5 2 2,5

3 "" I
0 0.5

I I I I
1. 1,5 2 2.5 3

Figure 4. Convergence for a white noise input, max displacement of 1. The time of
convergence is slower than the sinusoidal input with max amplitude of 1.

Reference:

[1] Gelb, A. editor (1999). "Applied Optimal Estimation" M.I.T. Press, Cambridge,

University of California

[L_~Lawrence Livermore
National Laboratory

153

Interdepartmental letterhead
Mail Station: L-290
Ext: 33088

01104 I00

To: Larry Ng
Dave Harris
Greg Clark

From: Greg Burnett

CC: Dave McCallen

Re: The dependence of convergence time for the EKF on the various noise parameters

I have studied the extended Kalman filter algorithm EKFSHO.M (see memo of 12/22/99)

which operates on a single DOF system in detail. I have noticed that it can be quite sensitive to

some of the given noise parameters, which include:

R = measurement noise covariance. This is a measure of how good the acceleration

measurement is. It is assumed to be of zero mean as we can HP filter any bias out. Our nominal

value for R will be about 1% of the maximum acceleration amplitude, a reasonable accuracy

estimation.

Q = state propagation noise covariance. This is a measure of how well the states propagate

according to the propagation equations given (the model). It, like all the other noise parameters,

assumes the disturbances to the propagation are white with the covariances of each state on the

diagonal. However, .poor or undermodeled systems will likely have correlated propagation

errors, which may cause convergence problems. This will have to be investigated and

allowances made if necessary. In our single DOF system, of course, the model is perfect, so all

of these values should be quite low. We will take as a starting point values that are about 1-10%

of the maximum amplitude of the states.

P = error covariance. This is a measure of the size of the error for each state. We supply

only the initial estimate, and the updated estimate is calculated in the algorithm. Our estimate

should reflect our confidence in the state calculation. Our initial estimate is low (around 1-10%)

for the states of displacement and velocity, but high (on the order of the estimated k) for the

stiffness state as it i.s our unknown.

University of Califomla
Lawrence Livermore
National Laboratory

154

Setup

¯ A sine wave at 1 Hz with an amplitude of I Newton is usedas the input to a SHO with m =

1, b = 0.3, and k = 5. The estimate of k was 3, an initial error of 40%. The sampling frequency

was 100 Hz. This system is underdamped and has a natural frequency of 0.36 Hz. Earlier tests

have shown that the convergence time is inversely related to the amplitude and frequency. That

is, all other things being equal, the higher the amplitude and frequency, the shorter the

convergence time. ~

For each experiment, a standard set of noise parameters (see Table 1) was selected and

single noise parameter was changed and its effect on the convergence time was noted. In each

Figure, a single noise parameter is plotted vs. the convergence time. The convergence time was

defined.as the time required for the k estimate (state 3) to converge to within 2% of the actual

value. If there were oscillations, the time is judged to be the last time that the plot crossed the

+ 2% lines before it stayed completely within the lines. Note that the plots are logarithmic on

the x axis and that the y scales (time) are in seconds and are frequently quite different. I’11.

address them each in turn.

parameter R Qil Q22 Q33 PI~ P22 P33

default 0.01 0.001 0.01 0.I 0.01 0.01 10

Table 1. Default values for the noise covariance paramenters used in the experiments.

Analysis

Figure 1: R. As expected, the convergence time is intimately related to the amount of noise

in the measurements. For very little noise, the convergence time is on the order of 2.4 seconds or

240 samples. For a covariance of 0.01 (which implies an accuracy of ’

_+ ~ -- _+0.1 m/s2 = _+0.01 g’s), the convergence time is essentially unchanged. For

covariance of 0.1 (accurate to 0.32 rn/s2, or about 0.03g’s) the convergence time jumps to 4.6

seconds. For a covariance of 1 (about 0.1 g’s) the convergence increases to 15 seconds. It

clear, then, that accelerometer performance will be crucial in keeping convergence times down.

I believe we can expect errors on the order of about 0.01 g’s, but I’ll have to talk to the MEs to

confirm this.

Figure 2: Qll. This is the estimated noise of the propagation of state 1, the displacement.

Since our model is perfect, we expect the convergence time to increase with noise level and this
University of California

[L~Lawrence Livermore
National Laboratory

155

is what we observe. The convergence time increases dramatically after a covariance level of

about 0.0001, or about 0.01 meters. As the maximum displacement of the SHO was on the order

of 0.1 meters in this experiment, as long as our propagation noise is below about 10%

(covariance of 1/100) of the maximum displacement, the convergence will be rapid.

Figure3: Q22. Here we would expect similar results to those seen for QI i, as this state is the

velocity of the system which should be described perfectly by our model. We see the same

¯ behavior, but the plateau at short times is not as pronounced. Here, for noise~ levels below about

0.001 or 0.03 m/s, convergence is excellent. As the maximum velocity is about 0.3 m/s, this

indicates that again convergence is rapid if the noise level is below about 10% (covariance¯of

1/100) of the maximum of the state.

Figure 4: Q33- This plot is a little different, as this state is the stiffness parameter. Instead

of rising with noise level, it drops~ from 2.9 seconds at a covariance of 0.0001 to 1. I seconds at a

covariance of 1000-10000. Although we are quite sure that the stiffness of the SHO does not

change, and therefore this noise propagation should be very small, the algorithm works faster if it

is very large. Perhaps¯ the large noise estimate allows the algorithm to change k more rapidly

than would be possible with a small P33. Indeed, if we examine the P propagation, we see that

~(t) --- F(~, t)P(t) + T (~, t) + Q(t

which would allow our P33 to be larger with each time step. As K is directly proportional to P

^ 1
K[k] = P[k_]HkT (~[k_]) ¯ k (~[k_])P[k_]H~ (x[k_]) + R[k]]- ,

(the quantity inverted in this case.is a scalar) and the estimate of the state is proportional to

~[k÷] = ~[k_] + K[k]. [y[k] - h(~[k_], k)]

then the estimate of k will converge more rapidly if P33 is large. As the convergence plateaus

after about 1000, an uncertainty 10 times larger than the estimate (covariance of about 100) is

probably enough. Much larger than that and the solution begins to oscillate and does not

smoothly converge to the correct answer.

Figures 5 and 6:PI1 and P22. These two plots are analyzed together because their behavior

is quite similar. As this is just the initial estimate of the error covariance, it shouldn’t have a

large influence on the convergence time as the initial displacement and velocity errors are quite

small (on the order of 10.3 for the displacement and 10-2 for the velocity for k = 3). Indeed, for

these two parameters the convergence time is quite insensitive to the initial estimate. For PI 1,

University of California

[L_~Lawrence Livermore
National Laboratory

there is almost no change as the estimate is varied from 10.4 to 10. For P22, there is a slight

change from 2.5 seconds at 10-4 to 4 seconds at 10, but this is insignificant compared to the

changes in convergence time for members of Q. We conclude that the initial values for these

equations are not critical, and will use about (0.1)2 times the maximum displacement and

velocity expected for the system.

Figure 7: P33. This parameter identifies the relative confidence we have in the estimate of

k. Setting this to a large relative value indicates we. are unsure of our estimate and allows the

algorithm to change the estimate more rapidly. It is clear that there is a substantial change in

convergence time when P33 is varied from 0.1 to 104. The major change occurs below about 100,

though, which is on the order of our estimate. Therefore we conclude that initial values for P33

should be about (1-10)2 times the initial k estimate.

156

Conclusion

For this system the following values have shown to result in minimum convergence times

when tested individually:

Parameter R

Value 0.01

Relative +0.01 g’s

QII

0.0001

(10% of

displacement)2

Q22

(10% of

velocity)2

Q33

(1-t0x

estimate)2

Pll

0.0001

(10% of

displacement)2

P22

0.001

(10% of

velocity)2

Table 2. The values chosen for the noise parameters and their relationship to the expected values.

P33

1000

(1-10x

estimate)2

The convergence of this system is only 0.25 seconds, compared to 2.5 seconds with our

default values, a decrease by a factor of 10. So it is clear that the values used for the noise

parameters can affect the performance of this system significantly.

So what does this mean for us? How is this better than the Gauss-Newton approach that I

detailed in an earlier memo? There are many advantages to this algorithm:

1. It models the problem as a continuous system with discrete measurements, negating the

need to transform the continuous system to a discrete one.

2. It is a recursive algorithm, so the data is processed sequentially, reducing the memory

requirements. This is also likely to be how the algorithm is implemented in an actual

application.
University of California

L~Lawrence Livermore
National Laboratory

157

o

The measurements modeled are the accelerations, not the displacements. Therefore no

conversion of data is needed.

The noise characteristics required can be used by the algorithm to adjust the model to fit a

variety of situations, even ones where the model may be inadequate.

Even with very’large initial estimate errors (on the order of 10000%), the algorithm can

converge on the correct answer.

Measurements at every node are not necessary, the algorithm will just. t:ontinue to

propagate the model according to its properties.

Disadvantages:

1. The continuous propagation of the system requires the use of ODE solvers, which can be

slow.

2. Without sufficient excitation (low amplitude and frequency) of the structure, the algorithm

may never converge onto the correct answer. For example, with a sine input of amplitude

100 an initial estimate of k = 1000 converged to the correct answer of k = 5 in 1 second.

With the same sine input.with amplitude 1, the algorithm never converged. This is an

extreme example, but this type of behavior ̄is important to know about.

Unknowns:

1. How rapid the convergence will be for large DOF systems.

2. How rapid the convergence will be for sparsely observed systems.

3. What the "zone of influence" around each measured node will be. That is, how far away

from each node will we be able to identify the stiffness parameters.

4. How fast or slow the algorithm will be for large DOF systems.

5. Whether or not simplified models of complex systems (i.e. 5 DOF NTS model) will

accurate enough to tell us anything.

I will now move to the 5 DOF system, and will perform a similar test on it as well as

examine the effects of observability and controllability.

University of California

[~ Lawrence Livermore
National Laboratory

" 158

25

2O

0

10.3

,/

10"~ 10"~
100

R

Figure I. Plot of R vs. convergence time to within 2% of the actual k value.

10

10"4 1 0.2

Qll

Figure 2. Plot of Q~t vs. convergence time to within 2% of the actual k value.
University of California

[~:_~Lawrence Livermore
National Laboratory

10"2

159

5

10 10 10.3 10"= 10"~

Q22

Figure 3. Plot of Q22 vs. convergence time to within 2% of the actual k value.

2.8

2.6

2.4

2.2

2

1.4

1.2

10.4 10"z 10.2 10"1 10° 101 102 103 104

Q33

Universia/of Califom~igure 4. Plot of Q33 vs. convergence time to within 2% of the actual k value.

Lawrence Livermore
National Laboratory

160

2.4

2,2

2.8

2.6

1.4

1.2

10,4 10"~ 10.2 I0"~ 10o

P11

Figure 5. Plot of PI ~ vs. convergence time to within 2% of the actual k

4.5

3.5

1.5

10 10"~ 10"s 10 100 101
P22

Figure 6. Plot of P22 vs. convergence time to within 2% of the actual k value.
University of California

[~.~Lawrence Livermore
National Laboratory

161

10"1 100 10~ 102 103

P33
10

Figure 7. Plot of P33 vs. convergence time to within 2% of the actual k value.

University of California

[L_L~Lawrence Livermore
National Laboratory

162

Interdepartmental letterhead
Mail Station: L-290
Ext: 33088 1/25/00

To: Dave McCallen
Larry Ng
Dave Harris
Greg Clark

From: Greg Burnett ;

CC:

Re: The performance of the EKF algorithm compared to the Gauss-Newton for the 10DOF system

Hello everyone,

In the last few days I have been analyzing the 10 DOF five-story building model with the extended
Kalman filter (EKF) as well as looking for ways to make it run better. I wanted to update you on the

progress. ¯.

To facilitate comparison with the Gauss-Newton (GN) iterative algorithm we used last year, I ran the
same battery of tests on it and plotted them on the same plot that I did last year. For the EKF, I used the
following values for the noise parameters (as outlined in my last memo "The dependence of
convergence time for the EKF on the various noise parameters"):

R = 0.01 (+ 0.01 g’s) for the measured nodes, 1 x ~2 for th e non-measured nodes

Qd = Pd = (0.001)2 = (10% of max displacement)2

Qv = Pv = (0.005)2 = (10% of max velocity)2

Qk = P~, = (3.1 x 107)2 = (10x stiffness estimate)2

I analyzed 500 samples with a sampling rate of 100 Hz. The driving function was a 1 Hz 1000
amplitude sine wave applied at the first floor. The analyses took about 1.8 hours each on a P2-450 and
2.2 hours on a P2-350.

The results are displayed in Figure 1. The blue lines are the EKF results and the red lines the GN. It is

clear that the EKF works much better overall, with the largest error only 15.6% as compared to 179%
for the GN. The GN has better precision on the ones it does well, but it must be realized that the EKF is
iterative and will likely beat out the GN if given more samples to operate on. Therefore it is fair to say

that the EKF outperforms the GN algorithm across the board with largely equivalent computational

University of California

[L~Lawrence Livermore
National Laboratory

163

times. The EKF has the added advantage of being able to use acceleration data directly and is able to
operate in real time. It also seems to have a wider "Zone of influence", being able to converge relatively
well with only a single measurement. For the single measurements the following was observed:

Measured

node

Original
estimate

1
2

3
4

5

Error

element 1

(%)

Error

element 2

(%)

Error

element 3

(%)

Error
element 4

(%)

Error
element 5

(%)

Mean error

(%)

- 14.5 -33.3 - 11.1 -20() -50 61.7
;

4.4 17.9 -1.4 -12.9 -16.7 10.7
6.2 -24.6 13.0 -13.3 4.9 12.4
2.5 -24.6 11.5 1.8 -34.5 15.0
1.9 -23.9 31.4 -6.3 -14.8 15.6

-5.8 -22.1. 11.2 10.4 17.9 13.5

Table 1. The estimation errors of the original estimate and the EKF algorithm results for a single measurement and 500
samples. The errors in bold are the errors for the elements next to the node being observed, the ones in blue are the lowest
errors for that particular case and the errors in red are the largest. Note that there is no observed correlation between an
observation and the lowest error.

Keep in mind that element 5 is located between nodes 4 and 5, so that an observation of node 1 will
yield information on elements 1 and 2 while an observation of only node 5 will only directly observe
element 5.

The interesting thing is that the mean errors are all about the same after 500 samples. The algorithm is
not terribly sensitive to the location of the largest model mismatches. This is in direct contrast to the GN
algorithm in which the largest error was when only node 3 (the most closely modeled node) was
observed. The error in that case was 179%, and there was no chance of it getting any lower. The error
of the EKF when node 3 was observed was only 15.0%, and with more samples it is possible that the
e~ror will decrease.

Another interesting thing was the lack of correlation between measurement and low error rates. Indeed,
there is only a single occurrence (node 3 measured) of an element by a measured node having the lowest
error. It seems for this simple system that the point of measurement is not a critical parameter.

One last consideration: The input function of this experiment was a sine wave, the convergence may be

more rapid and complete with a white noise source. I would like to try this out, but it would take a
couple of days and we are short on time. I am proceeding directly to the analysis of the NTS structure,
although it might be wiser to start analyzing real data on a smaller structure that can be modeled

University of California

[L_~Lawrence Livermore
National Laboratory

166

Interdepartmental letterhead
Mail Station: L-290
Ext: 33088

To: Dave McCallen
Dave Harris
Larry Ng
Jim Candy

From: Greg Burnett

CC:

Re: Estimating model order using the SVD of the generalized Hankel matrix

2/29/00

This is a memo describing the procedures for calculating the model order (if it less than the current
estimate) using the Hankel matrix (1). The filename is HANKEL_TEST.M.

The Hankel matrix is represented by

Yo (k)

H~(k_l)=/
[Yj-I (k)

Yo(k+t,) ... Yo(k+t.~_,)]

Y,(k+ t,): ... Y,(k+ ti_,)/ :

yj_t(k+tl) ... Yi ,(k’+t,_,)J

where Yj(k+t) is the time response of the system at discrete time t for thejth sensor. It is possible to
stack multiple repetitions of an experiment on top of each other to increase the accuracy of the
calculation. Thenj would be the total number of sensor recordings far all the experiments. For
example, if there are 5 sensors and three repetitions, j would equal 15. Once H(k) has been calculated,

singular value decomposition (SVD) is performed such that
H = PDQT

where D = diag(dl, d2, d3 dn, dn+t dN), arranged in ascending order. If H has rank n, all of the
singular values di (i -- n+l, ...N) should be zero. If some values are not zero but are below a threshold,
the number of values above the threshold is determined to be the rank of the system. It can be difficult,
however, to determine the threshold in a meaningful manner. The most common ways to do this are to

choose a threshold based on the measurement errors and the roundoff errors due to the finite precision of

the computer, the latter of which is the most conservative.

University of California

[L_~Lawrence Livermore
National Laboratory

167

Example: 10 DOF system

For the 10 DOF system, the H matrix was calculated using 1, 3 and 10 simulated 200-sample responses.
White noise and a 1 Hz sine wave were used as the inputs. For the sine wave, the SV were:

d~

1.0194

0.3159
0.17534

0.098458
0.038704
0.0027782

1.5002e-007
9.1443e-010
3.6045e-013
7.1239e-017

d ...,

1.4417

0.44675
0.24796
0.13924
0.054736
0.0039289

2.1216e-007
1.2932e-009
5.0976e-013
1.3691e-016
9.2406e-017
5.4194e-017
1.0246e-017
3.1416e-018

9.859e-026
5.2552e-026

0

d

3.2236
0.99897
0.55446
0.31135
0.12239

0.0087854
4.7442e-007
2.8917e-009
1.1399e-012
3,4406e-016

3.1178e-016
9.181e-017
6.7115e-017
2.6311e-024

5.82e-152
1.7477e-154

0

Table 1. Singular values for 10 DOF with 1, 3, and 10 sine wave experiments

In Table 2, the results using "white" noise (it’s not terribly white) as the input were:

University of California
Lawrence Livermore
National Laboratory

168

3.0879
1.8621
1.1926

0.55992
0.30377

0.0060326
3.3942e-006

5.9874e-009
4.0753e-012
1.6622e-016

d~

5.7475
3.6117
2.0775
1.7958

0.50934
0.011384

5.501e-006
2.8399e-009
6.5487e-013
5.4572e-016
3.8749e-016
2.4835e-016
1.2985e-016
1.0114e-016

1.7495e-041
3.8106e-045
3.1696e-048

10.829
5.5977
3.5007

3.2094
0.84204
0.017797

1.2048e~005
3.5921e-008
9.1223e-012
1.3807e-015
1.1974e-015
6.747e-016
5.1779e-016
4.1357e-016

7.9383e-151
8.2083e-156
2.9522e-158

Table 2. Singular values for 10 DOF with 1, 3, and 10 white noise experiments

Using the machine precision of about 1 x 10~6 as our threshold (a conservative one), it is clear that this

is about a 10 DOF system. Less conservatively, using 0.01% of the maximum acceleration measured as
a threshold (on the order of 1 x 10"6), we can describe the system only 6 DOF and still be able to model

the process adequately. Thus the system may be slightly over-specified, but not significantly.

If we repeat the effort using the 50 DOF system (using only 100 samples to save time), we see in Table
3 that the 50 DOF system can be described quite well using the 0.01% threshold (in this case about 103)

with only about 13 DOF. This confirms that the system is substantially over-specified,, and this may be
causing problems in the identification algorithm.

NTS 5 DOF:

Just to see what happens, let’s try the analysis on the NTS 5 DOF system. ! used 2 seconds of data (800
samples) from each experiment. After piecing together the data from five of the white noise
experiments and 1 of the swept sine, we see in Table 4 that the singular values are very large, much

University of California

[L~ La.w.rence Livermore
National Laboratory

169

5.4517e+005
3.7771

0.31248
0.20186
0.19007
0.1405

0.084585
0.067245
0.038537
0.0053582
0.0022263
0.0013009
0.0011309

8.7946e-005
4.5737e-005
3.1967e-006
3.6162e-007
1.3889e-007
1.0214e-007
4.552e-008
2.9745e-008
7.7709e-009
3.4277e-009
2.5221e-010
1.6772e-010
9.1908e-011
8.7112e-011
1.8675e-011
1.6054e-011
5.2008e-012
4.2227e-012
l.llle-O12

6.7755e-013
4.3064e-013
2.1113e-013
1.6548e-013
9.0577e-014
5.7861e-014
5.1306e-014
4.1158e-014
3.6638e-014
3.1338e-014
2.6422e-014
2.2437e-014
1.7044e-014
1.36e-014

1.2065e-014
3.788e-018

9.1338e-019
7.4538e-019

9.9645e+005
7.4706

0.63342
0.44984
0.41857
0.29166
0.14801
0.08745

0.059135
0.021721
0.01341

0.006996
0.0030913

0.00015612
9.2437e-005
6.9722e-006
2.4413e-006
1.3383e-006
2.455e-007
1.0369e-007
6.259e-008
1.862e-008
5.119e-009
7.8879e-010
5.2503e-010
1.9397e-010
7.534 le-Ol 1
5.9365e-011
4.1318e-011
3.0092e-011
2.3498e-011
5.1674e-012
1.6663e-612
9.5748e-013
8.7482e-013
5.3575e-013
1.8523e-013
1.7951 e-O 13
9.7289e-014
6.6973e-014
6.2035e-014
6.0726e-014
5.5899e-014
3.6316e-014
3.1304e-014

9.6218eo032
2.1657e-033

7.5627e+005
0.81524
0.49348
0.12125

0.088409
0.069179
0.051343
0.027197
0.010946
0.009895

0.0030746
0.00076~46
0.00038853
0.00017931
7.543e-005

6.6894e-006
1.1186e-006
5.2704e-007
2.8841e-007
8.9292e-008
1.6371e-008
4.5668e-009
2.6309e-009
6.6511e-010
1.5055e-010
8.8564e-011
3.5151e-011
2.4732e-011
1.7685e-011
1.5558e-011
8.5962e-012
4.1185eo012
2.6765e-012
7.105e-013
6.0978e-013
4.6454e-013
3.1747e-013
3.0546e-013
2.1142e-013
1.7061e-013

1.6e-013
1.2708e-013
9.6045e-014
8.8803e-014
7.2361e-014

2.9283e-034
0

Table 3. Singular values for 50 DOF with I and 3 trials with white noise input and 3 trials with sine wave inputs

University of California
Lawrence Livermore
National Laboratory

170

2250.2
1163.3
1082.6
848.84
663.6

585.06
461.33
392.48
262.89
238.58
210.16
164.19
134.88
94.636
88.062
69.076
64.416
56.636
47.742
38.71
38.205
29.843
25.403
21.567
19.645

15.034
11.737

9.5923
8.1228
7.4599

Table 4. Singular values for the NTS 5 DOF model with 5 white noise excitations and 1 swept sine excitation.

larger than the thresholds defined by machine precision or 0.01% of the maximum acceleration
measured (about 10"4). Therefore we may conclude that the model requires more than five DOF
describe the system adequately. "

References: [1] Juang, J.N. and Pappa, R.S. (1985). "An eigensystem realization algorithm for
model parameter identification and model reduction", J. Guidance Control Dyn., V. 8,
(5), pp. 620-627.

University of California

[L_~Lawrence Livermore
National Laboratory

171

Interdepartmental letterhead
Mail Station: L-290
Ext: 33088

To: Dave McCallen
Greg Clark
Dave Harris
Jim Candy

From: Greg Burnett ~

CC:

Re: Extended Kalman filter results for 10 DOF, 50 DOF, and NTS 5 DOF

311100

Hello everyone,

This is a memo detailing the results I have compiled by testing the Extended Kalman Filter (EKF, see
my earlier memo "The performance of the EKF algorithm compared to the Gauss-Newton for the 10
DOF system" of 1/25/00 and "Augmented state vector continuous-discrete extended Kalman filter
system identification approach" of 12/22/99 for details on the algorithm) with simulated 10 and 50 DOF
5 story, building as well as the real NTS structure, modeled as a 5 DOF system.

10 DOF with and without noise

Here, the 10 DOF (5 translational and 5 rotational) model was tested with different levels of noise and
with a variety of measured and unmeasured nodes. The rotational nodes were not considered measured,
and the number of translational nodes measured was varied. The unmeasured nodes were assigned a
variance of 1 x 10~2, effectively rendering each "measurement" completely ineffective in updating the
state. The results for no added noise and a white noise input were compiled in my last memo of 1/25/00.
To summarize, the EKF could identify the system quite well for just about any combination of
measurements, including only 1 or 2 measurements. It was much more precise and robust than the
Gauss-Newton iterative search. However, it was shown that it was quite dependent on a complete
calculation of the P propagation, which can take a significant amount of resources to compute. Also, the
effects of changing the input function or the noise inputs and matrices was not addressed.

To continue the examination of the performance of the EKF for the 10 DOF system, white noise with
different S/N ratios was added to the simulated measurements and different input functions and values

for the measurement covariance matrix R were used. The white noise was added at levels of-20 and -10
dB S/N. For example, for a S/N of -20 dB, white noise with a maximum amplitude of 1/10 of the
maximum of the corresponding clean measurement was added to each measurement. The noise-was

University of California
Lawrence Livermore
National Laboratory

172

therefore different for each DOF. A noise level of -20 dB is a significant amount of noise for sensitive
accelerometers and should be a good indication of noise robustness..The measurement noise covariance
was approximated by a constant for early experimentsi in later trials the actual covariance of the noise

added to the measurements was used.

Experiment .setup

There are several degrees of freedom here, namely:

II.
III.

IV.

The type of excitation (white noise, sine wave)
The level of noise added to the signal (none, -20 dB, -10 dB)
The size and composition of the R (measurement covariance) matrix
a. Same for all nodes (0.01, 0.1)

b. Different for each node (measured for each one)
Which nodes are observed (all, some, one)

I therefore ran several trials, varying one parameter at a time to come up with the best performance. My
standard perturbation of the initial parameter estimate * [7/8 3/4 9/10 1/3 2/3] will be used. That is, the
actual structure will have k values that are 7/8, 3/4,. 9/10, 1/3, and 2/3 of the estimate. The experiments
will be performed in the following order:

1. White noise input, no noise added, R = diag(0.01) (lower bound)
2. White noise input, no noise added, R = diag(0.1) (upper bound)
3. White noise input, rro noise added, R = measured for each node

:.

Of these experiments, trial 2 yielded th~ best results. Therefore I have fixed R at diag(0.1) for the rest
the experiments. It is not as good for some no-noise situations, but it is essential to only change one
variable at a time. The other two experiments with white noise inputs were

4. White noise input, noise added at-20 dB, R "- diag(0.1)
5. White noise input, noise added at -10 dB, R = diag(0.1)

This should give us a good idea of the ability of the algorithm to converge in the preset~ce of noise.

Incidentally, when using a white noise input the performance of the algorithm would fluctuate,
sometimes significantly, so some of the above results are averages over several experiments. These
fluctuations are not present when a sine wave input is used. I don’t know at the present time why the
performance would vary so much with the white noise and not the sine wave, which is only a single
frequency and shouldn’t excite the structure as well.

University of California

[L._L.~Lawrence Livermore
National Laboratory

173

I now repeat the above using a sine wave input, with frequency 1 Hz.

6. Sine wave input, no noise added, R = diag(0.01) (lower bound)

7. Sine wave input, no noise added, R = diag(0.1) (upper bound)

8. Sine wave input, no noise added, R = measured for each node

9. Sine wave input, noise added at -20 dB, R = diag(0.1)

10.Sine wave input, noise added at -10 dB, R = diag(0.1)

Again, using R = diag(0.1) led to the lowest error rates. The results for two separate iterations are
shown in Figures 1 and 2. The mean identification errors when the last 100 estimates are avei~aged are

shown in blue, and the single last estimate is shown in red. This can help us see where there is still some
oscillation around the correct answer. It is clear from the differences in Figures 1 and 2 that the
accuracy of the identification can vary significantly if the white noise input is used. The sine wave
input, on the other hand, yields identical answers when there is no added white noise (as expected) and
exhibits only a slight variation when white noise is added to the measurements. I do not know why the
performance of the algorithm varies so widely when white noise is used as the input, but it makes it
difficult to compare performance. Therefore, for the observability test the sine wave input shall be used,
as it results in a more predictable performance.

Now we may examine the effects of observability. The same parameter perturbation as above was used,
while the number and locations of the observations were varied. The results are shown in Figure 3. In
this figure, each set of stacked boxes As before (see memo of 1/25/00, "The performance of the EKF
algorithm..."), the EKF (blue bars) performed reasonably well over the entire structure, unlike
Gauss-Newton algorithm (red bars). Even with a single measurement reasonable accuracy is obtained.

Conclusion for 10 DOF

The EKF works quite well on the 10 DOF system, with and without noise present. The next test should
be combining a low number of measurements with added noise to see.if identification is still possible
with only one or two sensors in the presence of noise.

50 DOF without noise, only floors measured

This model is the same as the 10 DOF with the column discretized into 9 sub-columns. The
measurements are assumed to take place only at the floors, so the number of measurements stays the
same at 5 but the number of DOF goes up by a factor of 5.

University of Califomia

~L_L~Lawrence Livermore
National Laboratory

174

I have not yet been able to make any progress on the 50 DOF model of the five-story buiiding. I have

varied the noise covariance matrices, the input amplitude, the size of the perturbation, and the location

and size of the perturbations, and I can get no convergence at all. Worse, the algorithm is very slow -
about 50 hours for 100 samples. This is due to the very large size of P: 125 x 125. This means there are
7750 independent members of P that have to be propagated, so ode45 has to be run 7750 times per time
sample. This is quite costly.

However, even with the high cost we still have no positive results. The nodes that are~perturbedare not

detected, even with a change of up to 50%, and nodes far away from the damage are sometimes
identified with errors ranging up to 50%. With the same amplitude input function as used for the 10
DOF, the changes in the output due to the perturbations (even for 20% changes in stiffness) were very
small. It was necessary to multiply the input by a factor of 1000 in order to make the errors large
enough to affect the output, something that should not be necessary as the 10 and 50 DOF systems are
very similar models. The estimation results for 5 of the 25 of the stiffness values (these are ones located
next to the floor nodes) are shown in Figure 4. It is clear that there is little convergence, except possibly
for states 110 and 115. The other three estimates are very poor and are headed in the wrong direction. It
is possible that a larger number of samples would yield better results, but as it currently takes an hour to
compute two samples, further computations have not been attempted yet. It is also possible that we are
suffering the same problems as before using a white noise input, but I have seen the same results five
times in a row, making the possibility remote. I am re-running the experiment with a sine wave input
just to be sure, though.

I have an idea as to why identification of this system has been difficult. This is a model that can be
completely specified by 10 DOF, yet we are attempting to describe it using 50 DOF. Thus we have the

classic problem of over-specification, where many of the DOF are not necessary to describe the system.
This may be the reason we are having trouble identifying it. It is also true that over-specification is the
exact opposite of the situation we will commonly encounter in practice, where our model will most
likely under-specify the system. Thus it may not be the best test of the algorithm. I would suggest a
different model, one that requires 50 or more DOF in order to completely describe the system. This may
be the only way to effectively test the algorithm. We will still be limited by the long computational
times, but at least we will be able to more effectively test the algorithm. I have used the SVD of the
generalized Hankel matrix to estimate the order of the m~trices for the 10, 50, and NTS 5 DOF systems.
The results confirmed that only at most 14 or so DOF is needed for the 50 DOF system (see "Estimating
model order using the SVD of the generalized Hankel matrix" of 2/29/00).

NTS 5 DOF

This is a 5 DOF model that describes ~he large 5-story model instrumented at NTS. I believe this model
has the opposite problem as the one described in the 50 DOF section, as it is far too low order to

University of California

[~_~Lawrence Livermore
National Laboratory

175

describe the system effectively. The SVD of the Hankel matrix confirmed that the system is under-
specified. I have tried many different values for the noise matrices P, Q and R, and have not been able
to get the system to converge, even for up to 59 seconds of data at 400 samples/second. The stiffness

values do not change much at all or just continue to change very slowly, with no hint of convergence.
At Dave Mc’s suggestion, I even tried changing the algorithm so that every independent value of K

would become a parameter, in order to ensure that the algorithm had the most flexibility possible. This
worked on the 10 DOF, but not on this system.

I have proposed to Dave Mc that we first tryto identify a simpler known syster~, such as coupled

oscillators with three or more masses. This would allow us to test the algorithm with real data, yet the
system would be well understood and easily described with only a few DOF. I would als0 like to be
able to add a fourth, smaller mass to the system to explore to what extent model inconsistencies may be

accounted for in the designation of Q, ttie system propagation noise matrix. The nature of the EKF is
that some modeling inaccuracies may be compensated for by enlarging Q, but how large the
inaccuracies may be and the amount of Q change required is not clear. It would be nice to be able to
describe this quantitatively. This experiment would also make a good paper.

Conclusions

I have been able to show that the EKF works quite well with the 10 DOF simulated system, even with
-10 dB added noise in the measurements. However, this is a simulated system, and the modeled and
actual systems are the same order - indeed, they are identical except for the stiffness values. It may be
interesting to change the experiment slightly so that the model is only 8 DOF, and then see if we can still
estimate the system well. It may also be useful to process the measurement data to get an idea of what
order model should be used to simulate the system. There are several ways to do this, using singular
value decomposition and others, and it may be useful to look into that. However, for this year, we may
want to limit ourselves to understanding the limits under which the EKF and its like may operate

successfully.

I also believe that the 50 DOF model should be revamped no represent a system that requires close to 50
DOF to be described correctly. As for the NTS structure, I think we should start a little smaller and
instrument a real low DOF system that we can describe using a simple model. That way we can wring
out the algorithms and the noise problems more systematically.

University of California

[~_~Lawrence Livermore
National Laboratory

176

16

14

> 50%

¯ 10 DOF with -20 dB noise without (red) and with (blue) averaging of last 100 points

experiment #

> 300% > 30 % > 300%

7 8 9 10

Figure 1. Outcomes for the 10 experiments above, first iteration. The left (red) bar represents the mean
identification error with no averaging, while the right (blue) bar is the error with the last 100 samples
averaged. It is clear that the sine wave input results in a more accurate identification.

University of California

[L_~Lawrence Livermore
National Laboratory

177

10 DOF experiments without (red) and with (blue) averaging of last 100 points

3 4 5 6 7 8 9 10
experiment #

11

Figure 2. Outcomes for the 10 experiments above, second iteration. The left (red) bar represents the mean
identification error with no averaging, while the right (blue) bar is the error with the last 100 samples
averaged. It is clear that the white noise input is much better behaved in this example, although overall the
sine wave input still results in a more accurate identification.

University of California

Lawrence Livermore
National Laboratory

178

0 0

mn--m--
University of Cahtom~a

LL,~Lawrence Livermore
National Laboratory

179

4
x 106 Actual stiffnesses (blue) vs, identified (red)
’ I I I

3 I I I
0x 106 0.1 0.2 0,3 0.4 0,5 0.6 0.7 0,8 0,9 1

21 I t I ~ ~ ~ t I I
0Z 106 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9

I

\’\’""’~

I
--.i

I "--’~ ..[I I I I I "’~1

0.1 0.2 0,3 0,4 0.5 0,6 0.7 0.8 0.9 10X 1’06
6,

~ 4~ -

2~ i i I i I I i
0~ 106 0.1 0,2 0.3 0,4 0.5 0.6 0.7

I I
0.8 0.9

0.1 0.2 0.3 0,4
2

0 0.5
time (sec)

0.6 0.7 0.8 0.9 1

Figure 4. The actual values for five of the 25 stiffness value to be identified (blue), and the estimated values
(red)., These five values are next to observed nodes and should be easilyidentified. Note that the y axis
does not the same scale for every plot.

University of California
Lawrence Livermore
National Laboratory

Interdepartmental letterhead
Mail Station: L-271
Ext: 33088

To; Dave McCallen
Dave Harris
Jim Candy
Larry Ng

From: Greg Burnett .~

CC:

Re: Suggestions and comments from advisory meeting of 3/1/00

3/I/00

180

Hello everyone,

Thank you to everyone who could attend the meeting today. I appreciate you all coming, it’s nice once
in a while to be able to mine the gold of the Lab. ©

Here’s a list of observations, suggestions, and comments from the meeting:

10 DOF, 50 DOF, General

1. Use the more stable Joseph form for calculating the updated state covariance P.

Use a pseudorandom input to the system, it has a wide bandwidth butis deterministic and
repeatable. Using a "random" (but known) input does not lead to repeatable results as it is but
single realization of a random process. Using a sine wave is not effective at exciting many
modes of the system.

Since the 50 DOF system seems to be highly over-specified, try simulating 5 measurements
given the 50 DOF model and then try to identify it using the 10 DOF model. This will help
determine if the over-specification is causing convergence problems.

4. Add an insignificant amount (i.e. le12) of noise to the.data for "noise-free" simulations to avoid
singular matrices in the algorithm.

5. Check the 50 DOF residuals to.see if they are white even though the algorithm has not converged
to an answer. If they are, then there is no way the EKF can calculate a solution.

University of California

[L.L~Lawrence Livermore
National Laboratory

181

Since ~[k+] = ~[k_] + K. e, check for AK to drop below a threshold value. Once it does, replace

it with a constant - this will speed up processing.

7. Examine the P propagation in more detail. Since
~’(t) F(~:, t)P(t) + P(x (~, t) + Q(t

and we know a lot about F and Q, it may be possible to speed up the propagation calculation by
excluding some parts of the right side of the above equation from the ODE solver.

8. Check AP, so that if parts of it get very small, they may be excluded from the ODE calculation.

See if the P propagation can be split into parts, some of which are simple enough to do with an

exponential matrix calculation.

NTS structure

1. Use the MUSIC (Multiple Signal Classification) algorithm to determine the pole locations given
the measured output of the structure.

Do the same thing to the innovation sequences. This will determine the location of the

uncaptured modes of the system. Can also do it by comparing the spectra of the model and
measured system.

3. Bandpass filter the data so that the modes the model is not able to capture are excluded from the
data.

4. Use a simple grid-search or similar method to calculate the initial estimates of the stiffness
parameters. Then run the EKF with the new estimates.

I think that’s about it. If I have missed anything or if you have any further suggestions let me know.
Thanks again for coming!

Greg

University of California
Lawrence Livermore
National Laboratory

Interdepartmental letterhead
Mail Station: L-271
Ext: 33088

To:

From:

Dave McCallen
Dave Harris
Jim Candy
Larry Ng

Greg Burnett

CC:

Re: Action on suggestions and comments from advisory meeting of 3/1/00

4/28/00

182

Hello everyone,

This is a report detailing the actions taken on the suggestions received at the advisory meeting of
March 1. I have listed the action after each recommendation.

10 DOF, 50 DOF, General

1. Use the more stabl.~ Joseph form for calculating the updated state covariance P.

Action: Implemented.

2. Use a pseudorandom input to the system, it has a wide bandwidth but is deterministic and

repeatable. Using a "random" (but known) input does not lead to repeatable results as it is but
a single realization of a random process. Using a sine wave is not effective at exciting many
modes of the system.

Action: Used IDINPUT.M to build a pseudorandom input function from sine waves that has many
of the qualities of white noise over a specified bandwidth. Algorithm performance now much more
repeatable.

3. Since the 50 DOF system seems to be highly over-specified, try simulating 5 measurements
given the 50 DOF model and then try to identify it using the 10 DOF model. This will help
determine if the over-specification is causing convergence problems.

183

Action: Implemented, and the 10 DOF model identified the 50 DOF system rather well, converging
to an error of about 5-10 % within about 20 samples. True convergence was never achieved, as

shown in Figure 1, but the identified values oscillated around the correct ones and the average error
(taken over a few hundred samples) was clearly quite small. This would seem to indicate that the
DOF system may not be identifiable using a 50 DOF model as this is a vast overspecification of the
system in question. This agrees with the results from my memo of 2/29/00, "Estimating model order
using the SVD of the Generalized Hankel Matrix".

4̄. Add an insignificant amount (i.e. le"12 or -240 dB) of noise to the daka for "noise-free"
simulations to avoid singular matrices in the algorithm.

Action: This was implemented, and a reduction in the maximum of AK, AX, and AP by about three
orders of magnitude was observed. Clearly the algorithm is more stable with this option. The

practice will be continued in the future to avoid any potential singularity problems.

5. Check the 50 DOF residuals to see if they are white even though the algorithm has not
converged to an answer. If they are, then there is no way the EKF can calculate a solution.

Action: The 50 DOF algorithm takes about 25 minutes to calculate each residual point, so it would
take a significant time to generate enough points for a meaningful analysis. AS the results of Section
3 have shown the system to.be very overspecified, it is probably not worth the time to complete this
experiment. It is almost certain that most of the residuals would be white, as most of the DOF are
superfluous and have little effect on the output of the system.

6. Since ~[k+] = ~[k_] + K-e, check for AK to drop below a threshold value. Once it does,

replace it with a constant- this will speed up processing.

Action: The 10 DOF system was run with no noise, a standard (large) perturbation, and the
pseudorandom input. The changes in K, P, the states X, and the innovations (y-yhat) were
calculated at each time step. This was done to see if K and P would converge to some sort of
steady-state value. The results for K are plotted in Figure 2. Here, the average change (in percent)
for all the member of K is shown for each time step. Clearly, K did not settle rapidly to a steady-
state value, instead there were significant changes in K long after the algorittim had settled on the
correct stiffness values. This was true with and without adding the small amount of noise to the
system as discussed in Section 4. The algorithm had converged to within about 2% accuracy by 75

samples, but there are still very large changes in K evident long after convergence occurred (red
arrow). This shows that in this case, setting K constant after a short period of little change could
have significant impact on the ability of the algorithm to converge to the correct answer.

University of California

[~L~Lawrence Livermore
National Laboratory

184

As an example, I tried using a AK threshold of 10% (after the change in K drops below 10%, it was

kept constant) to observe the effect. In the original algorithm, the identification error rate was less
than 1% and it took less than 6 minutes to converge at 80 samples. Using a AK threshold of 10%,
the identification error jumped to 81.4% and convergence was not attained, as the accuracy was not
good enough to stop the processing (the changes in the stiffness values are examined, once they drop
below a threshold 20 times in a row the iterations are terminated). In this particular case AK
dropped below 10% and was held constant after only 7 samples, and although the algorithm ran in
about one-half of the normal time, the identification error was not acceptable. Smaller values of AK

were tried, but none resulted in reliable identification accuracy and reduced computational times.
Therefore AK is not at present seen as a way to decrease the computational expense of the algorithm.

The present system uses a subroutine that checks to see when the changes in the stiffness states of X
drop below about 0.2% for 20 subsequent samples and it seems to work pretty well. It terminated
the iterations for the experiment above after only 80 samples, and was accurate to less than 1

percent.

However, I wanted to check and see if all of AX (including the displacement and velocity states, not
just the stiffness states) would be a better termination criterion than just the stiffness states. Figures
3 and 4 show the change in X (all states) and the change in the X (stiffness states only) vs. sample
forthe 10 DOF model. It is clear that using all states, AX is not that stable, with relatively large
changes occurring long after the convergence time of 75 samples. However, the change in X using
stiffness states only is very good, with the change in percent reaching essentially zero by 75 samples.
This is what I have been using to limit the number of iterations needed, and it works quite well in
that capacity.

Thus my conclusion here is that the change in K is not a reliable indicator of algorithm convergence,
rather the change in the identified parameters is a better termination criterion.

7. Examine the P propagation in more detail. Since

~(t) = F(i, t)P(t) + r (i, t) + Q(t
and we know a lot about F and Q, it may be possible to speed up the propagation calculation
by excluding some parts of the right side of the above equation from the ODE solver.

Action: The P propagation was examined, and it was determined that there was no simpler way to
calculate the above relation. For example, in a 1-D system, the F matrix is

University of California

[L.L~Lawrence Livermore
National Laboratory

185

F = - X3/m -- b/m - x /m

0 0

where x~ is the displacement, x2 is the velocity, and x3 is the stiffness parameter (see memo
"Augmented state vector continuous-discrete extended Kalman filter system identification approach"
of 12/22/99). Even ifP starts off as diagonal, it rapidly fills, and by taking first FP then PFr we get.

a thorough mixing of variables such that the equation for ~ is not a simple One, even without the

addition of Q. Thus there is no shortcut that can be taken in the calculation of P.

8. Check AP, so that if parts of it get very small, they may be excluded from the ODE
calculation.

Action: I have tried a few techniques in the past with no success in this area. These include using a
linear and quadratic interpolation for P, using a constant P after AP dropped below a threshold, and

compiling parts of the [a calculation. I tried four techniques this time. The first was as above in
Section 6, where I looked at the average change in percent of P from one sample to the next. This
was to determine if P converged to a steady state value and could therefore be expressed as a
constant after some time. This technique did not work, but I wanted to know why so I plotted the
changes in P vs. time.

The results are shown in Figure 5. It is clear that like K, the members of P do not converge to some

steady-state value; there is still significant change after 75 samples, the convergence time. Thus it
will not be possible to use a constant P at any time to save computational cycles.

The second technique considered was to take the difference of each member of P just before and just
after the update calculation. If the difference was below a threshold, that member of P was held
constant and not propagated using ODE45.M, saving comp cycles. This differs from the technique
above, in which the entire P was held constant if the mean change was below a threshold. Each

member was tested each time, so that a member could be held constant one round and then be
propagated the next. This resulted in significant computational overhead, but I wanted to see if there

was a threshold we could use that would save enough time to justify the extralcomputational
expense.

The results from the second test are more involved and are tabulated in the first 11 rows of Table I.
Some experiments were run more than once to get an idea of the variability of the results. The
criterion for convergence was a threshold in the change in stiffness states, detailed above. It is clear
that a APi threshold of about 1% was the maximum that could be used without raising the error rate

to unacceptable levels. Unfortunately, this threshold did not result in a reduction in computation

University of California

[L_L~Lawrence Livermore
National Laboratory

186

time, even though almost 5% of the ODE calculations were skipped. It is thought that the overhead
associated with keeping track of the changes in P probably results in little computational savings.

Also, the reduced accuracy due to the approximation in P means that the algorithm does not
converge as quickly to the correct values, somewhat increasing the calculation time. Therefore this
option does not seem to be a wise one - approximating changes in P results does not significantly
reduce computational expense.

The third method was to limit the area of P that was calculated each time. Since the stiffness states
are the only ones of interest, it may be that the P calculation is only critical where Ithe stiffness states

are concerned. Perhaps it would be possible to set the P calc constant for the displacement and
velocity parts and only calculate those parts of P related to the stiffness states. The result is :shown
in row 12 of Table 1. It actually seems to work pretty well, enabling a reduction in calls to
ODE45.M by over 95% (reducing the runtime by over 50%) and still getting pretty good stiffness
estimates (8.2% error) by averaging the last two hundred points. By plotting the estimates, it was
clear that they oscillated about the actual stiffness values, indicating weak convergence. This
warranted further exploration. A compromise was tried in which all of P is calculated every 5th or
10th step and the stiffness state propagation is calculated the rest of the time (every sample). The
results are Shown in Table 1 in rows 13 and 14. It worked surprisingly well, achieving a mean
identification error of only 1.16% (1.39% with the last two hundred estimates averaged) for every th

calculation to 3.35% (1.97%) for every 10th. At the same time, it took only slightly longer than the

threshold of 1% and about V2 the time of the 5% AP~ threshold.

The fourth method is quite simple -just calculate P every 5th or 10th time and consider it constant

the rest of the time, skipping the stiffness updates. This worked quite well, with 80% of the
ODE45.M calculations skipped and identification error rates of only 0.39% calculating every 5th P
and 1.97% every 10th. This accuracy held up for a variety of inputs. It seems the stiffness states
need not be calculated each time to maintain a decent level of accuracy. As the run times were
essentially the same, calculating P every 5th sample seems to be a good choice. I think this is the

best. way to achieve reasonable identification accuracy while saving some computational expense. In
hindsight, this should have been attempted first, as it is the simplest of all the ones I have tried. Of
course, if everything went perfectly it would still be faster to calculate P every time, as the
convergence is faster..But for situations where convergence is not rapid or assured, only calculating
P every 5th step may make sense.

9. See if the P calculation can be split into parts, some of which are simple enough to do with
an exponential matrix calculation.

Action: Due to the addition of FP and PF"r, there is no simple split that can be made to simplify the

calculation.

University of California

[~L~Lawrence Livermore
National Laboratory

187

NTS structure

1. Use the MUSIC (Multiple Signal Classification) algorithm to determine the pole locations
given the measured output of the structure.

Action: Completed, results for STRUCOW5.MAT (undamaged structure excited with a white noise

input) shown in Figure 6. From the MUSIC algorithm (PMUSIC.M) it would, seem that
resonances of the system are located at about 2.0, 14.2, 32.0, and 37.6 Hz (tt~e resonances near 60 Hz

are probably just noise). However, a glance at the power spectral densities (psds) of each channel
(Figure 7) reveal that only the first floor has a resonance at 2.0 Hz, the rest are all at 4~4, 14.4, 32.4,
and 38.0 Hz, which seem more reasonable. I am not sure why MUSIC places the lowest resonance
at 2.0 Hz rather than 4.4, as only one channel exhibits that response and four others do not. What is
clear is that there is a significant amount of energy near DC for all the sensors, indicating a

substantial DC drift, which was observed and filtered out before processing.

Both methods show that there is significant energy above 50 Hz in the output of the sensors that is
probably not due to the input of the system, which was supposed to be bandlimited to 50 Hz but had
a 3-dB frequency of about 55 Hz and was only about 10 dB down at 60 Hz. Thus this energy may
b.e due in part to input frequencies at a decreased level, system nonlinearities and noise. This energy
was previously noticed and removed before identification was attempted, but it is important to know
that it is present. It is also important that the same filters used on the output signals be used on the

input, or the syste.m will try and match i.nput frequencies to output frequencies that have been
removed. Also r~oticed in the examination of the psds in Figure 7 was the relative lack of energy in
the fourth floor signal at about 38 Hz. This could be due to a sensor malfunction, as all experiments
showed a similar absence for the same sensor, andas there is no reason for the 38 Hz signal to not be

present in only the fourth floor. However, the sensor may have been functioning correctly as the
higher (-60 Hz) noise was recorded at about the same level as the other sensors. Just to be safe,
the identification process, the uncertainty for the fourth floor measurement was increased to the
point where the algorithm ignored the updates from the fourth floor. This should not adversely
affect the convergence of the algorithm, as it was shown (see memo "Extended Kalman Filter results
for 10 DOF, 50 DOF, and NTS 5 DOF" of March 1, 2000), that the 10 DOF model would converge
upon the correct answer easily with only 4 measurements. This, of course, is’ contingent upon the 10

DOF model describing the system with enough accuracy to allow convergence to occur.

In conclusion, there is fair agreement on the resonance locations using the MUSIC and PSD
algorithms. They both indicate resonances at around 14.3, 32.2, and 37.8 Hz. The MUSIC
algorithm seems to place the lowest resonance at only 2 Hz (and the first floor psd agrees) while the

University of California

~L_~Lawrence Livermore
National Laboratory

188

other floor psds seem to indicate about 4.4 Hz. The fourth floor sensor data is probably unreliable
due to the lack of frequencies around 38 Hz and it will not be used in the identification process.

2. Do the same thing to the innovation sequences. This will determine the location of the
uncaptured modes of the system. Can also do it by comparing the spectra of the model and
measured system.

Action: The psds of the recorded accelerations from STRUCOW5.MAT and the r~espective.
innovations are shown in Figure 8 for the 2000 points between 1 second and 6 sec’onds. It is clear

that there are frequencies in the innovations that are not being modeled. In all cases, the recorded
energy 14.4 Hz is not being modeled adequately. In floors 3 and 4, the peak at 37.6 is also notbeing
modeled adequately, but it seems to be modeled correctly on the other floors. This makes it more
difficult to identify as some floors are modeling the motion correctly while others are not.

We may also learn something from looking at the psds of the simulated floor signal using the
recorded input signal. This will tell us where the model expects the resonances of the system to be.
In figure 9, the psds of the recorded input signal and the simulated floor outputs are shown. The
expected (see table 4, column 2) resonance at 5.2 Hz is easily identified except for the third floor,
where it is conspicuously absent. This was also the floor where the force was applied, so it is likely
that the response will be different there. The resonance at 13.2 Hz is also quite easy to see, and the
peaks at 21.4 and 26.9 can just be made out. Thus, the model "expects" frequencies to be present
near these resonances, and itis unknown why the model is unable to match the simulated peak at 13

Hz to the observed at 14.4 Hz.

3. Bandpass filter the data so that the modes the model is not able to capture are excluded
from the data.

Action: From Section 1 and Figure 7, the recorded resonance locations are located at about 4.4,
14.4, 32.4, and 38.0 Hz for all channels except for the first floor, where the lowest resonance seems
to be about 2.0 Hz. A 15th order bandpass (BP) filter was constructed using YULEWALK.M with

passbands from 1.0-6 Hz, 12.5-16.5 Hz, 31-34 Hz, and 36.5-39.5 Hz. The frequency response of the
BP filter is shown in Figure 10. It is not perfect, but it. was the best I could do using a single filter
stage with the parameters given. The FILTFILT.M command was used to minimize phase distortion
and double the magnitude response of the filter. The recorded input and outputs from
STRUCOW5.MAT were filtered and the resulting data used to identify the NTS structure. The
identification program is EKF_NTS.M, and it uses fifteen parameters to attempt the identification.

These parameters are the shear parameters %, stiffness parameters E, and length parameters L.
Although the.number of parameters (15) is larger than the number of DOF (5), this should not result
in a problem. I have conducted tests using the 10 DOF simulated system and the k values of the K

University of California

[~_L~Lawrence Livermore
National Laboratory

189

matrix as my identification parameters, which far outnumber the 10 DOF. In these tests,
convergence as observed only on those stiffness values which were independent of each other. The
dependent stiffness values did not change. Thus in this case, if the identification parameters do not
significantly affect the response of the structure, their values will remain unchanged. The results are
not encouraging, and are summarized in Tables 2 and 3.

From Table 2 it is clear that the O~y parameters are the ones that were significantly changed, and

therefore are the only ones that significantly affect the response of the syster~. Thus further studies
will only use those parameters in order to speed up the processing time.

In Table 3 we see the results when 0nly the ~ty parameters are varied. The results are the same as for
just about every other identification attempt: One of the parameters has grown to a large size, and the
rest are all significantly decreased in size. It is not always the same parameter that grows, but it is

almost always just one.

In Table 4 the resonance locations for the FEM, the EKF models (one with 15 identification
parameters and one with 5), and the measured data ar.e plotted. There is not a one-to-one
correspondence between the locations as they do not place them all in the same frequency bands.

Using the 15 parameter EKF (2nd column), it seems that for 15 variables we have made a positive
difference (11.1, 3.4, and 1.9%) in the estimation .of the resonance locations observed at 4.5, 14.7,
and 38.0 Hz. However, the 15 variable EKF still has pole locations at 0.7 and 9.3 Hz that are not
observed, although the 0.7 resonance could be trying to model the observed 1.6 Hz.

Using only five variables, the improvement in estimation goes down for the observed locations at 4.5
Hz (only 4.4% better instead of 11.1) and 14.7 Hz (a disappointing 10.2% worse as opposed to 3.8%
better). Howeve.r, identification of the pole at 38.0 Hz has significantly improved from 1.9% better

¯ to 10.7% better, and there is also an indication that the resonance observed at 1.6 Hz in floors 1 and
2 (see Figure 7) is being modeled by the FEM.

In all of these tests P was calculated every sample, as accuracy and not speed was more important in
this calculation. Also, if a parameter was iderttified as negative, it was reassig~aed a value of
(original estimate)/10. This is because the quantities above cannot become negative and remain
physical model, and it was assumed that the real values should be within 90% of the estimate. There
was no restriction placed on the size of the parameter if positive, so occasionally the change would
be greater than 90%.

University of California

[~L~Lawrence Livermore
National Laboratory

190

With the above restriction relaxed from 10% to 0.1%, the results were significantly worse, indicating
that the 10% restriction is probably for the best. It might be better to restrict this even more in the
future.

Returning to the default 10% restriction, I ran the ID algorithm with 30 seconds worth of data
(12000 samples) instead of 5 seconds to see if that helped any. The results are shown in the fourth

column of Table 5. It did not match the resonance at 4.5 Hz well, but matched the one at 14.7 Hz
better than when 5 seconds of data were used. Still didn’t converge, though.

Finally, I decided to use a series of high-performance Chebychev II. notch filters to pass only the
frequencies of interest to see if a better filter would help. The effect of five of these notch filters on
a white noise input is shown in Figure 11. The top trace is the white noise spectrum, and then each
one down from that is the spectrum of the noise after one of the notch filters is applied. The red

trace on the last plot is the desired spectrum, and you can see that the performance is quite good..

So did this help? In a word, no. The fifth column of Table 5 shows the results of the experiment -
the algo identified eigenfrequenciesat 0.01, 3.7, 7.0, 9.4, and 15.1 Hz. The lowest resonance is too
low, the 3.7 Hz is not a good approximation to the 4.5 Hz, the 7.0 and the 9.4 Hz are not observed in

the data and there are no resonances associated with the strong peaks at 31.9 and 38.0 Hz. However,
the resonance at 15.1. Hz is markedly (7.5%) better.than the FEM, but this is the only blight spot

the picture.

Examining the PSDs of the innovations for this experiment (Figure 12) show that there is significant
energy at 38.0 Hz for Floors 2-5 and at 14.7 Hz for Floors 4 and 5. This shows that for some reason
the model cannot fit the resonance at 38.0 Hz. I tried filtering out first the 38.0 Hz band and re-
doing the identification. The results are shown in the sixth column of Table 5, and although the 4.5
Hz peak is modeled quite well the rest of the resonance locations are questionable. Lastly, I also
removed the 14.7 Hz band (seventh column) and repeated the identification, with even poorer
results. Part of the problem here is that the innovations in Figure 12 do not have the same energy at
the same locations for all the floors. Perhaps it would be better to filter only the floors with
nonwhite innovation energy, i.e. for 14.7 Hz we would only filter the 4th and 5th floors. I don’t think

¯ it will make that much difference, but it may be worth a try.

Basically, all of these models suffered from the same problem - the solution never really converged.
Almost all the parameters would get driven down as low as possible (to about 10% of their starting
value) with perhaps one or two at about the same magnitude. The resulting simulated accelerations
were very large, on the order of 10x what was measured, leading to large innovations and poor
overall fits. I believe that this model is simply inadequate to describe the dynamics of the NTS
structure.

University of California

[~L~Lawrence Livermore
National Laboratory

191

4. Use a simple grid-search or similar method to calculate the initial estimates of the stiffness
parameters. Then run the EKF with the new estimates.

Action: Unfortunately, I did not have time to implement this.

I think that’s about it. If I have missed anything or if you have any further suggestions let me know.
Thanks again for coming!

Greg

University of California

[L_~Lawrence Livermore
National Laboratory

192

Tables

Exp
#

1
2

3
4

5
6
7
8

9

10
11
12

13

14

15

16

Threshold (%)
parts calculated

None

None
10-16

0.001
.0.01
..0.1

0.1
1.0

1.0
2.5
5.0

Only stiffness

Every 5th with

stiffness
Every 10tla with

stiffness
Every 5th w/o

stiffness
Every 10th w/o
stiffness

Run time*

(min)
5.88

6.59

7.99
7.93
7.88

8.15
7.67
8.24

6.95

19.48
18.54
8.99

10.0

9.96

Samples to

converge
127

127
127

127
127
127

127
134

134
N/A

N/A
N/A-

-150

-150

9.62 -100

9.77 ~150

ODE calc
skipped (%)
0

0

0.002
0.17

0.39
1.03
1.03
4.65
4.84

8.18
15.2

95.4

75.4

84.2

90.0

Mean ID
error (%)
0.62

0.62
0.63

0.66

0.65
0.38
0.62

0.30
0.35

30.8
(8.20)!

1.16

(1.39)I

3.35

(1.97)I

1.97
(1.65)~

Max ID
error (%)
1.68
1.68
1.68
1.79
1.78
0.79
1.61

0.65
0.77

77.6

-2.84

-7.88

-3.98

Table 1. Convergence times and identification errors for the same input/output sequences and different AP
thresholds and conditions. Every nth with stiffness means that the Pdot values associated with the stiffness states
were calculated at each time sample and the entire Pdot calculation was done every n samples. Every n~ without
stiffness means that only the entire P calculation was done every n samples.

* run time can vary depending on the amount of memory available, accurate to about +- 1 minute’
t average error using stiffness values defined by the mean of the last two hundred estimates

University of California

[L_~Lawrence Livermore
National Laboratory

193

Identification

parame.ter

~2
%3

E~

Model value

0.00216
0.00216

0.00216

Estimated value

0.0000156
0.000528

0.000216

% difference

99.28
75.575

90.0
81.060.0018 0.000341

0.0018 0.005210 .; -189.44

1.06 e7 1.06 e7 0

E2 1.06 e7 1.06 e7 0

E3 1.06 e7 1.06 e7 0

E~ 1.06 e7 1.06 e7 0

E5 1.06 e7 1.06 e7 0

LI 25.5 25.5 0.00081

L2 25.0 24.998 0.00705

L3 25.5 25.5 -0.00028

L4 22.0 22.0 -0.00011

L5 26.5 26.5 -0.00178

Table 2. Results of NTS 5 DOF identification where a simple filter was used to try and remove the modes that
were not being fully addressed by the model. Here 15 variables are used to do the identification. It is clear that
the % coefficients are the only ones that affect the response of the model, in the future they are the only ones used.

Identification
parameter

%3
~4
~5

Model value Estimated value

0.00216 0.009227

0.00216 0.000216

0.00216 0.000345

0.0018 0.00018

0.0018 0.00018 90

% difference

-327.16

90
84.015
90

Table 3. Results of NTS 5 DOF identification where a simple.filter was used to try and remove the modes that
were not being fully addressed by the model. Only the o~ parameters were varied in an attempt to identify the
system. Three of the parameters have been reduced to their minimum allowed values (denoted by a 90% change),
indicating that convergence has probably not been attained.

University of California

[L_~Lawrence Livermore
National Laboratory

194

Recorded

resonance locations

(Hz)

FEM e-frequencies

in Hz (error %)

EKF 15 variable

calc e-freq in Hz,

(improvement %,

~ood)

1.6 0.7
4.5 5.2 (-15.5) 4.3 (11.1) 5.0 (4.4)

9.4 7.6.t
14.4 13.2 (8.3) 13.7 (3.4) 11.7 (-10.5)

21.4
26.9

31.9 33.6 # (-5.3) 34.3 (-2.2)
38.0 33.6# (9.7) 34.3 (1.9) 37.7 (10.7)

EKF % variable

calc e-freq in Hz,

(improvement %,

~ood)

2.1

Table 4. Comparison between the original FEM e-frequencies, the EKF e-frequencies (once using all 15 variables
to identify the structure, and once using only the ay values), and the location of the resonances of the recorded
measurements’ spectrum from STRUCOWS.MAT. Neither model has two peaks above 30 Hz, and it is unclear
which recorded resonance they are attempting to match. All were using 5 seconds of data, the noise parameters
were AQx = APx = 0.02, AQv = AP, = 0.4, AQk ---- APk -" parsl, ARm = 0.2, AR4 = let2.

= not sure if the algorithm fitting the recorded peak at 31.9 or 38.0 Hz

Recorded reso-

nance locations i

(Hz)

1.6
4.5

14.7

31.9
38.0

FEM e:

frequencies in

Hz, (error %)

5.2 (-15.6)

¯ EKF with

simple BP 5 sec

data

(improvement

%, + I~ood)

2.1

5.0 (4.5)
7.6

11.7 (-10.2)

EKF with

simple BP 30

sec data

(improvement

%)
1.2, 3.0

5.3 (-2.2)
8.3

EKF with notch

filters

(improvement

%)

0.01
3.7 (-2.2)

7.0, 9.4

EKF with notch

filters, 38 Hz

block filtered

out

1.4
4.5 (15.6)

6.9, 9.6

EKF with notch

filters, 14.7 and

38 Hz blocks

filtered out

0.4
2.3 (-33.3)

8.4, 8.5
13.2 (10.2) 13.4 (0.5) 15.1 (7.5) N/A Filtered out

21.4

26.9 107.2
33.6 (-5.3)#

Filtered outN/A33.6 (11.6) # N/A37.7 (10.8)
30.3 (0.3)

Filtered out
Table 5. Eigenfrequency locations for the 5 DOF NTS model using two different filters (simple BP and 5 stage
notch) to limit the frequencies available to the identification algorithm. The first column is the observed
locations, the second is the FEM locations (with error in %), and the rest are the different filters (with
improvements over the FEM locations in parenthesis). All except column 4 were using 5 seconds of data, the
noise parameters were AQx = APx = 0.02, AQv = AP, = 0.4, AQk.= APk = parsl, ARm = 0.2, AR4 = le12.

University of California

[~L~Lawrence Livermore
National Laboratory

195

Figures

x 106
4.

Actual 50 DOF stiffness vals (blue) and 10 DOF estimated ones (red)

2 2.5 3 3.5 4~ 10 6 0.5 1 1.5

~ 106 0.5 1 1.5 2 2.5 3 3.5 4

0 I I I I I I I

0X 106 0.5 1 1.5 2 2.5 3 3.5
51 , , , , , , ,

4

0
~ 106 0.5

41 ,

0 0.5

1 1.5 2 2.5 3 3.5 4

.,,c~’i _i’,:,~._..,__~.~,~..,,’: ...^ -," .--’~"’ ~"V
"’"""-"

" """"" ~"!" - ~’-’~

I I I I I I

1 1.5 2 2.5 3 3.5 4

time (sec)
16-Mar-2000

Figure 1. The identification estimates using the 10 DOF model and the 50 DOF simulated system
outputs. 1000 samples were used, the first 400 are shown. All initial estimates were 3.1e~, all
actual values were 1.55e~. The large divergence of state 24 near 4 seconds was corrected by 4.2
seconds.

University of California

[~ La .w.rence Livermore
National Laboratory

196

delta K in percent for fully measured 10 DOF, no noise, std pert, convin 75 samps
50001 ,

4500 F ’

4000 1 ..

3500 ~- ..

3ooo ...
I

._.¢ 2500 ..
¯

1500 ~- ..

1000 ~

0 t100 200 300 400 500 600 700 800 900 1000
Samples at 100 Hz

15-Mar-2000
Converged by here

Figure 2. The change in K (in percent) for the 10 DOF system out to 1000 samples at 100 samples/second.
The algorithm had converged to within 1% error by 75 samples.

University of California

[L._~Lawrence Livermore
National Laboratory

197

1.8

1.6

1.4

x 10s delta X in pement for fully measured 10 DOF, no noise, std ~ert, cony in 75 samps

200 300 400 .500 600 700 800 900 1000
Samples at 100 Hz 15-Mar-2000

Converged by here

Figure 3. The change in all states X in percent for 1000 samples at 100 samples/second. Note the
scale here is multiplied by l0s, the maximum value being 2 x 10s%.

University of California
Lawrence Livermore
National Laboratory

198

1,8

1.6

1.4

0.6

0.4

0.2¸

0
0

delta X (stiffness only) for fully measured 10 DOF, no noise, std pert, cony in 75 samples

.]’

400 500 600 700 800 900 100(
samples at 100 Hz 17-Mar-2000

Figure 4. The change in only the stiffness states in percent for I000 samples at 100
samples/second. Note the scale here is much smaller, the maximum value being only 1.8 %.

University of California
Lawrence Livermore
National Laboratory

199

Converged by here

Figure 5. The change in error covariance P in percent for 1000 samples at 100 samples/second.
Note the scale here is multiplied by 106, the maximum value being 3.5 x 106%.

University of California

[L.~Lawrence Livermore
National Laboratory

5,8

5,6

x 10"~

~

6~ : ’ " , ,
~2.0 Hz

2 Hz
5,2’,- ~ - -

o ~o

14.2 Hz

37.6 Hz 59 2 ,Hz

, ; ; ;
20 30 40 50 6O

Frequency (Hz)

Figure 6. MUSIC spectrum of five +y direction outputs from strucow5.mat, first 5
seconds, 1000 points (pmusic.m).

University of California

[,L.~ Lawrence Livermore
National Laboratory

201

PSDs for each recorded floor signal (y3, y6, yg, y12, y15)

40ki~ ; ; ’ ’ ’ ’ ’ ’ ’
"~ 2o~-~._- - - ’; .-~- - ~=,../\;~ .~.,-~~v~---: : :
o o~-- ~--~..:.<~- - -’,-,.,t~:+~/--~ Z: : : "
~-20~- i i I i i i I I i

0 10 20 30 40 50 60 70 80 90 1 O0

o~ 2Oo~’~- !-’~- ~~- ~’ /"~~D.-Oct..~,"-~~~_r’,,~_’’ ’
Ii-20 I- i I’ I I I I- "-," "1 I

0 10 20 30 40 50 60 70 ~ 80 90 loo
60 i I " i I " I i I ~ i
4o~- ~7/’\ : : : ; ;
20 ’~ -~ ’,-Sk.,r---, \- - - -. ,--~ o -"-’-~,-~. -~_r,,,_~_- 7,~.~M~~
"2OF- i]I I II I " i

0 10 20 30 40 50 60 70 80 90 100
6oi , , , , , ,, ,, ’, !,<, 4o~- ~ - - -’.:-,,-: ’.,~. ;,~,; ; ; ;.;_.

~ 2ok-- -,~- - - -~ .m-.-,.~_.~, ~.:..: ~ , _ L;-.:/ ’-’- ’-.. ’ .:’ .. _’
,G- o1-’--.~ ~--,~. - ~ :- - .--v-:-w-.,--i,.t),<-: " - "-~~_c/’.~z_--:!,. _’%~f. _’;~..c_

-2Ol- i i I I vi I i i
0 10 20 30 40 50 60 70 80 90 100

601 I I I i I I i I I
._]

,~ 4Or- ’, _:f’,< " i : .,-t.,-,.’-/X~ ’, : ’. : :
B 20iV h’ ,;-/’ " ~rc’’-’<-~’-w%’-/ -"~ " ’ ~" ’ ~:~’k , , ’ ¯

..... ,
0 10 20 30 40 50 60 70 80 90

Frequency (Hz)
IO0

Figure 7. The power spectral density estimates (psds) of the recorded y-direction outputs (y3,
y9, y12, and y15) for the first 30 seconds of strucow5.mat. The major peaks are at approximately
4.4, 14.4, 32.4, 38.0, 59.5, and 63.2 Hz. There is also significant energy at about 1.5 Hz for the first
floor (top plot), and a significant lack of energy at 38 Hz for Floor

University of California

[L_~Lawrence Livermore
National Laboratory

202

PSDs for each floor signal (blue, y3, y6, y9, y12, y15) and the innovations (red)

60 ~ ".~/-\.- - . i:.:,\,: .",. ;.- .., -’ ./~ -... ~. -’..~-..,’~- ’ ’ ’
40 ’-- - ?:";. ’. ;7 . .’ -~.. "’ ,’ : "." "" \, ,’’"’"",’~-.-"’.--, .,i

20W- - - i , , , ~ ~ , , i
0 5 10 15 20 . 25 30 35 40 45 50

-50
0 5 10 15 20 25 30 35 40 45 50

, , ,--- ..,,... , ~-.- ._. ~.--.~.... . -~---~..:...:.,~...~..-.." - -._.

0 5 10 15 20 25. 30 35 40 45

0 5 10 15 ¯ 20 25 30 35 40 45

I I I /
0 5 10 15 20 25 30 35 40 45

Frequency (Hz)

22-Mar-2000

Figure 8. Power spectral densities (psds) of the recorded data from the five floor sensors monitoring
acceleration in the.+y direction (blue, lower trace) and their innovations (red, top trace). An.y nonwhite
energy in the innovations means that the model is not sufficiently describing the system near that
frequency. The data have been HP filtered above I Hz to remove DC drift.

University of Califomia

[L_~Lawrence Livermore
National Laboratory

40
~ 20
.c: 0

-20

PSDs for each simulated NTS floor signal

0 10 20 30 40 50 60

_o 20

.~_ 0
~o -20

0 10 20 30 40 50 60

20 kJ , ~7- , , ’ 4/~-’v"c-</-~---.~ -I--f’-v- ~ v ~../" - - ~./-"-"-.- -"

-201 I I I ~ ~
0 10 20 30 40 50 60

’~"
~_

I I I I I |40
.... /->~ --..,,,.,-:~- - -"~--.,k/ "-’-’~-- ~’>’- -"~,- - ~,+----\-,~ : qo~ 20 _ .~/.

:--. ~:: : Y-:-- ?’-~--:~~-~-’:-.~ --I~.

.201 /I I I I

0 10 20 30 40 50 60
40~- ’ ’ ~ ’ !

= ,,. ":~ . .-....~.’2 ~ , - \’_20 ~
/ . ~ ~/~_~ .~

,
0 - ~-~’- : : ~" .C: "/~--..-,~ " - :,

-20 / i’ i i ~" i "~ ~ v~’-"v~-~---.~ ,-.
0 10 20 30 40 50 60

Frequency (Hz)

Figure 9. PSDs of the simulated output form the NTS 5 DOF model using the recorded ihput from
strucow5.mat. The only two recognizable resonances are at about 5.0 and 13.0 Hz. Note the relative
lack of structure compared to Figure 7.

University of Califomia

[L_L~Lawrence Livermore
National Laboratory

2O4

0

-20

-40

-60

-80

-100
0

Frequency response for 15th order yulewalk filter (blue) and desired response (red)

10 20 30 40 50 "61
Frequency (Hz)

0 10 20 30 40 50
Frequency (Hz)

6O

Figure 10. Frequency responsefor single stage multiple bandpass filter (blue) and the desired
response (red). Note the poor fit when only one stage is used.

University of California

[~_~Lawrence Livermore
National Laboratory

205

The five stages of notch filtering a white input

-1 O01 ~ ~ ~ ~ ~ ~ ~
O0 5 10 15 20 25 30 35 40 45 50

-50~- : : : ; , :.. ’"
"’t

.1001 : : : : ; ; "
,- -

.

O0 5 10 15 20 25 30 35 40 45 F;O

...... :: i
"I00 I ; ~ i , ~ ~ ~

O0 5 10 15 20 25 30 35 40 45 . 50

-50 ~

-I001 , , I I ’ i ,

0 0 5 10 15 20 25 30 35 40 45 50
!~’----~-~..L_., I ~ I I I ~ I ~_~ I.,.!~..~..__.,.L_~_.._...__~. ~

-50 :- -, _ . _~ , ,

-1 O0 ~ ~ ~ ~ ~ ~ ~ ~ /
O0 5 10 15 20 25 30 35 40 45 50

.’ , ,, ~ ~ ~ . ~ ~ ’~ ,

0 5 10 15 20 25 30 35 40 45 50
Frequency

Figure 11. The five stages of notch filtering a white noise input so that information is only passed in
the frequency bands of interest. Five high performance Cbebychev II notch filters were used to
achieve the desired spectrum (red trace on lowest plot).

University of California

[L_~Lawrence Livermore
National Laboratory

206

PSDs for each floor innovation signal

0 : , , ,. , , : , ~,. ,

0 5 10 15 20 25 30 35 40 45 50

40

~.. 20F ’, ’. : ’, ’, ’,’"--- " ":

0 5 10 15 20 25 30 35 40 45 : 50

~ 20 --

0 5 10 15 20 25 30 35 40 45 50

u_ 20

0 5 10 15 ,20 25 30 35 40 45 50

I I I I I I I I

0 5 10 15 20 25 30 35 40 45 50
Frequency (Hz).

Figure 12. PSDs of the innovations while using the notch filter of Figure 11. The peak at 38.0 Hz
and the smaller one at 14.7 Hz indicate the model is not describing the system well near those

¯ frequencies.

University of California

~ Lawrence Livermore
National Laboratory

